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Validity of Neural Networks to Determine Body Position on the Bicycle
Rodrigo Rico Bini a, Gil Serrancolib, Paulo Roberto Pereira Santiago c, Allan Pinto d, and Felipe Moura e

aLa Trobe University; bUniversitat Politècnica de Catalunya; cUniversity of São Paulo; dInstitute of Computing, State University of Compinas; eState 
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ABSTRACT
Purpose: With the increased access to neural networks trained to estimate body segments from images 
and videos, this study assessed the validity of some of these networks in enabling the assessment of body 
position on the bicycle. Methods: Fourteen cyclists pedaled stationarily in one session on their own 
bicycles while video was recorded from their sagittal plane. Reflective markers attached to key bony 
landmarks were used to manually digitize joint angles at two positions of the crank (3 o’clock and 6 
o’clock) extracted from the videos (Reference method). These angles were compared to measurements 
taken from videos generated by two deep learning-based approaches designed to automatically estimate 
human joints (Microsoft Research Asia-MSRA and OpenPose). Results: Mean bias for OpenPose ranged 
between 0.03° and 1.81°, while the MSRA method presented errors between 2.29° and 12.15°. Correlation 
coefficients were stronger for OpenPose than for the MSRA method in relation to the Reference method 
for the torso (r = 0.94 vs. 0.92), hip (r = 0.69 vs. 0.60), knee (r = 0.80 vs. 0.71), and ankle (r = 0.23 vs. 0.20). 
Conclusion: OpenPose presented better accuracy than the MSRA method in determining body position 
on the bicycle, but both methods seem comparable in assessing implications from changes in bicycle 
configuration.
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Bicycle fitting is a method utilized to optimize the position of 
the bicycle to the cyclist (Bini, Hume, & Croft, 2014), which 
involves a range of measurements to assess cyclists’ posture on 
their bicycles. Among the most recommended techniques to 
assess body position on the bicycle, analysis of joint angles 
from video recording has been largely used as it allows for 
bicycle fitting to be further individualized (Fonda et al., 2014; 
Swart & Holliday, 2019). However, accurate measurements of 
angles involve determining joint centers from manual palpa
tion and markup of bony landmarks on the skin (Malus et al., 
2021), which can be prone to errors depending on the experi
ence of the assessor (Sinclair et al., 2014). Nevertheless, when
ever markers are properly attached to bony landmarks, they are 
considered a gold standard method.

The use of marker-less methods to extract joint centers from 
video has been attempted in several studies (Grigg et al., 2018; 
Needham et al., 2017; Ong et al., 2017; Serrancolí et al., 2020). 
Ong et al. (2017) observed differences of <1° for various joint 
angles using a marker-less tracking system during walking and 
jogging, demonstrating promising outcomes. More recently, 
the use of convolutional neural networks (CNNs) trained on 
large image datasets (Cao et al., 2021) improved human pose 
estimation and joint center identification. These methods 
involve the use of images from people performing various 
movements (i.e., walking, jumping, dancing, etc.) that are 
labeled to determine body segments and joints (i.e., keypoints) 
and used for training a computer program to automatically 
identify similar patterns in new images. However, only 
Serrancolí et al. (2020) utilized CNN-based approaches to 
identify segmental movement and joint centers during cycling. 

This application is important as it can further allow for mar
ker-less methods to determine cyclists’ position on the bicycle 
and potentially inform bicycle fitting. However, comparison 
with criterion methods (i.e., marker-based) is lacking given 
neural networks use different assumptions in determining 
joint centers (i.e., methods to determine body segments). 
This provides an opportunity to utilize pre-trained networks 
that can determine human body segments and joints for the 
analysis of cycling.

Body position on the bicycle has largely involved deter
mining upper and lower limb angles at key parts of the crank 
cycle. As an example, the 6 o’clock (Bini, 2020; Peveler & 
Green, 2011; Priego Quesada et al., 2016) and the 3 o’clock 
positions of the crank cycle (Bini & Hume, 2016; Bini, Hume, 
Croft, & Kilding, 2014) were utilized. The main rationale for 
choosing these positions is because the 6 o’clock is close to the 
maximum extension of the lower limbs (Holmes et al., 1994) 
and the 3 o’clock is close to the peak pedal power (Martin & 
Brown, 2009). Therefore, examining joint angles at these 
positions can help differentiate cycling posture (Bini, Hume, 
Croft, & Kilding, 2014). However, the use of marker-less 
motion analysis methods has not been assessed in terms of 
their accuracy in determining cyclists’ posture. The use of 
marker-less method as part of bicycle fitting assessment 
using video-calls can be helpful because the restrictions 
from COVID-19 have limited face-to-face non-essential 
activities globally. Moreover, utilizing freely available pre- 
trained networks could accelerate the use of these automated 
methods by practitioners, reducing barriers such as image 
labeling and network retraining.
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RESEARCH QUARTERLY FOR EXERCISE AND SPORT 
https://doi.org/10.1080/02701367.2022.2070103

© 2022 SHAPE America 

http://orcid.org/0000-0002-2138-7350
http://orcid.org/0000-0002-9460-8847
http://orcid.org/0000-0003-3765-8300
http://orcid.org/0000-0002-0108-7246
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/02701367.2022.2070103&domain=pdf&date_stamp=2022-05-14


Therefore, the aim of this study was to compare a marker- 
based method for estimating joint angles on the bicycle (i.e., 
Reference) with two open-source convolutional neural net
works (Cao et al., 2021; Xiao et al., 2018) designed to perform 
the same task automatically. Given that these pre-trained net
works are normally trained using images from people perform
ing a wide range of movements (e.g., walking, jumping, 
dancing, etc.), our hypothesis was that both methods should 
provide practically acceptable measurements of body position 
on the bicycle (i.e., joint angles). Therefore, broad learning 
obtained from both networks should be appropriate to detect 
body segments in cycling-related images.

Materials and methods

Fourteen male cyclists (33 ± 7 years of age, 176 ± 6 cm of 
stature, and 74 ± 8 kg of body mass) ranging from recreational 
to competitive were assessed in a single session using their own 
bicycles (road, triathlon, or mountain bike). They were 
engaged in road, triathlon, or mountain bike training covering 
5 ± 3 hr and 128 ± 65 km of cycling training per week at the 
time of the study. We based our sample size calculation on the 
intention to determine a minimum difference of 5° in angles, 
which is at the center of the range proposed to determine body 
position on the bicycle (i.e., 10°; Millour et al., 2019; Swart & 
Holliday, 2019). We also assumed that the within-cyclist’s 

variability in angles would be 3.4° (Bini & Hume, 2016), 
resulting in an effect size of 1.47. Our sample size calculation 
involved a comparison of paired samples when α = 0.05 and 
the power of the test is 0.80 using G*Power statistical package 
(Faul et al., 2007). Before data collection, all cyclists signed an 
informed consent to participate in the study, which was 
approved by the University Human Ethics Committee 
(HEC19001).

After measurements of stature and body mass, cyclists per
formed 2 min of cycling on their own bicycles attached to 
a home cycle trainer (Active Intent Fitness Bike Trainer, NZ) 
at self-selected cadence. A high-speed camera (Exilim EX- 
FC150, Casio Computer CO, Tokyo, Japan) was positioned at 
the height of their saddle, 4-m away from the bicycles to record 
movement in the sagittal plane. Reflective markers were posi
tioned at the acromion, greater trochanter, lateral femoral 
epicondyle, lateral malleolus, and the head of the fifth meta
tarsal bone (Figure 1). Videos were recorded for 20 s at the end 
of the 2 min of exercise at 120 fps (640 × 480 of frame resolu
tion) using automated quick shutter and anti-shake settings to 
minimize blur.

In this study, we compared the OpenPose (bottom-up) and 
the Microsoft Research Asia (MSRA—top-down) methods, 
deep learning-based approach designed to estimate human 
pose and joint angles, in the context of bicycle fitting. The 
bottom-up method relies on existing data to train the network, 

Figure 1. Illustration of the measured angles and image from the skeleton created by the MSRA method.
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while the top-down method uses current learning to improve 
the accuracy of the network in future predictions. The MSRA 
method first detects the location of people in an image and then 
the body segments for each detected person. Individuals and 
their respective body segments are detected using the Mask 
RCNN framework (He et al., 2020), which is a two-stage 
approach where, in the first stage, images are scanned to 
determine areas likely to contain an object, while the second 
stage classifies these areas and generates bounding boxes and 
masks (i.e., removing surroundings). To associate each person 
and its body segments with detections from consecutive 
frames, the authors proposed a tracking algorithm that takes 
advantage of temporal information via optical flow technique 
(Teed & Deng, 2020). This involves extrapolating future posi
tion of segments during sequential movement from historical 
data (i.e., bottom-up approach). OpenPose introduced the 
concept of association scores via Part Affinity Fields (PAFs), 
which are a set of vector fields that determine the location and 
orientation of body segments. The vector fields allow the esti
mation of a degree of association between body segments. 
OpenPose computes a confidence map that informs the loca
tion of the body segments and a set of vector fields (PAFs). 
Finally, both the confidence map and PAFs are fused by 
a greedy inference strategy to estimate the final set of joints 
(i.e., optimization of joint locations), for each person in the 
image.

Video files were then imported into a customized program 
adapted from a freely available code. This code implements the 
Microsoft Research Asia (MSRA) method (Xiao et al., 2018) in 
MATLAB (R2021a, MathWorks Inc., Natick, MA, USA). In this 
study, we used a model pre-trained in the COCO Consortium 
(cocodataset.org; Lin et al., 2014), which involves annotation of 
250,000 people with segments identified in a broad range of 
movements such as walking, jumping, and dancing, as exam
ples. Video files were generated where the joint centers (i.e., 
keypoints) and body segments were identified by the pre- 
trained neural network. The same process was conducted 
using the OpenPose method (Cao et al., 2021), which is also 
pre-trained in the COCO dataset. Videos generated by the 
MSRA and the OpenPose methods were later utilized to manu
ally digitize torso, hip, knee, and ankle angles in two parts of 
the crank cycle (3 o’clock and 6 o’clock), as shown in Figure 1. 
As a reference method, videos with only reflective markers 
were utilized. Raw videos (i.e., Reference method) and pre- 
trained neural network-generated videos were imported into 
ImageJ (National Institutes of Health, USA), where a single 
experienced assessor measured the angles across five consecu
tive cycles. Even though both pre-trained neural networks 
estimated joint coordinates, we followed a method utilized in 
clinics and bike fitting, where angles are manually measured 
from pre-located joint positions on the video (e.g., Bike Fast Fit 
—Video Bike Fitting). This process enables the identification of 
angles in key areas of the crank cycle without a requirement of 
tracking multiple video frames. Because the MRSA did not 
track the foot, the ankle angle was measured using the head 
of the fifth metatarsal bone marker for all methods.

Differences in mean angles from each cyclist between 
manually placed markers and joint position predicted by the 
neural network methods in relation to the Reference method 

were determined using paired-samples t-tests for each crank 
position. Magnitude of differences was assessed using Cohen’s 
effect sizes (d). Whenever p < .05 and d > 0.80, practically 
important differences were assumed from the data. Mean bias 
and confidence interval for the differences (CI95) were calcu
lated as part of the Bland–Altman method (Martin Bland & 
Altman, 1986), and Pearson correlations were computed to 
assess association between methods. R values were ranked as 
poor (0–0.5), moderate (0.5–0.75), good (0.75–0.90), and excel
lent (>0.9; Dancey & Reidy, 2004). Statistical analyses were 
conducted using customized spreadsheets (Excel, Microsoft 
Inc., USA) and GraphPad Prism (Version 9.0.2, GraphPad 
Software, San Diego, CA, USA).

Results

Significant differences were observed between angles from the 
MSRA method in comparison to the Reference method, at the 
3 o’clock crank position, for the torso (p < .01, d = 0.38), hip 
(p < .01, d = 1.93), knee (p < .01, d = 1.52), and ankle (p = .01, 
d = 1.05). No differences though were observed between angles 
from the OpenPose and the Reference method (torso p = .09, 
hip p = .12, knee p = .69, and ankle p = .36). Angular data are 
presented in Table 1.

Mean bias [CI95] between angles from the MSRA method 
compared to the Reference method at the 3 o’clock position 
was −2.6° [−8.0; 2.8] for the torso, 8.9° [0.8; 16.9] for the hip, 
12.1° [−0.3; 24.6] for the knee, and 7.8° [−11.3; 26.9] for the 
ankle. Mean bias [CI95] between angles from the OpenPose 
method in comparison to the Reference method at the 3 o’clock 
position was 1.5° [−4.6; 7.6] for the torso, 1.4° [−4.9; 7.8] for the 
hip, 0.4° [−7.7; 8.6] for the knee, and −1.5° [−13.3; 10.2] for the 
ankle. Correlation coefficients were stronger for the OpenPose 
method than for the MSRA method in relation to the Reference 
method for the torso (r = 0.94 vs. 0.92—excellent), hip (r = 0.69 
vs. 0.60—moderate), knee (r = 0.80—good vs. 0.71—moder
ate), and ankle (r = 0.23 vs. 0.20—poor). Bland–Altman plots 
illustrate these outcomes in Figure 2.

Significant differences were observed between angles from 
the MSRA method in comparison to the Reference method, at 
the 6 o’clock crank position, for the torso (p < .01, d = 0.67), hip 
(p = .01, d = 0.52), and knee (p = .02, d = 0.46). No differences 
were observed for the ankle (p = .10). No differences were 
observed between angles from the OpenPose method and the 
Reference method (torso p = .08, hip p = .97, knee p = .09, and 
ankle p = .28). Angular data are presented in Table 1.

Table 1. Mean ± SD angles of the torso, hip, knee, and ankle at the 3 o’clock and 6 
o’clock crank positions determined using the reference method, the MSRA 
method, and the OpenPose method.

Angles (°) Torso Hip Knee Ankle

3 o’clock crank position
Reference 137 ± 7 41 ± 4 63 ± 7 120 ± 6
MSRA 139 ± 7* 32 ± 5* 75 ± 9* 113 ± 9*
OpenPose 135 ± 9 40 ± 3 64 ± 5 122 ± 3

6 o’clock crank position
Reference 136 ± 7 68 ± 4 33 ± 8 140 ± 8
MSRA 141 ± 7* 65 ± 5* 37 ± 11* 137 ± 11
OpenPose 134 ± 9 68 ± 4 35 ± 7 141 ± 8

*Indicates significant difference in relation to the Reference method.
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Mean bias [CI95] between angles from the MSRA method 
in comparison to the Reference method at the 6 o’clock posi
tion was −4.4° [−12.8; 3.9] for the torso, 2.3° [−2.9; 7.5] for the 
hip, 4.3° [−7.7; 16.3] for the knee, and 3.3° [−10.7; 17.4] for the 
ankle. Mean bias [CI95] between angles from the OpenPose 
method in comparison to the Reference method at the 6 o’clock 
position was 1.81° [−5.1; 8.7] for the torso, −0.1° [−4.3; 4.3] for 
the hip, 1.5° [−4.8; 8.0] for the knee, and −1.2° [−9.1; 6.7] for 
the ankle. Correlation coefficients were stronger for the 
OpenPose method than for the MSRA method in relation to 
the Reference method for the torso (r = 0.94—excellent vs. 0.79 

—good), hip (r = 0.86 vs. 0.82—good), knee (r = 0.91—excel
lent vs. 0.82—good), and ankle (r = 0.87 vs. 0.75—good). 
Bland–Altman plots illustrate these outcomes in Figure 3.

Discussion

The purpose of this study was to compare joint angles on the 
bicycle assessed using pre-trained neural networks with out
puts from a marker-based method. The hypothesis was that 
both methods would provide practically acceptable measure
ments of joint angles due to similarities in body position. The 

MRSA 

OpenPose 

Figure 2. Bland–Altman plots comparing differences, mean bias (continuous lines), and limits of agreement (dotted lines) between the MSRA method and the Reference 
method (Ref—upper panel) and the OpenPose method and the Reference method (lower panel) for the 3 o’clock crank position.
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data demonstrated that the OpenPose method presented 
greater accuracy than the MSRA method in determining 
body position on the bicycle. Mean bias for the OpenPose 
method ranged between 0.03° and 1.81°, while the MSRA 
method presented errors between 2.29° and 12.15°. Ong et al. 
(2017) observed differences of <1° for various joint angles 
using a marker-less tracking system during walking and jog
ging. During cycling, intra-session errors in joint angles have 
been shown to vary between <1° and 3° (Bini & Hume, 2020), 
which suggests that differences between the OpenPose method 

could be negligible but the MSRA method presented larger 
errors. These findings are novel because they demonstrate 
that an automated marker-less method (i.e., OpenPose) can 
accurately determine joint angles and help assess body position 
on the bicycle.

The assessment of joint angles during bicycle fitting is based 
on the fact that changes in bicycle configuration affect move
ment patterns (Bini, Hume, & Kilding, 2014; Menard et al., 
2020). This means that accuracy in determining joint angles is 
important to ensure that the position of the cyclist on the 

MRSA

OpenPose 

Figure 3. Bland–Altman plots comparing differences, mean bias (continuous lines), and limits of agreement (dotted lines) between the MSRA method and the Reference 
method (Ref—upper panel) and the OpenPose method and the Reference method (lower panel) for the 6 o’clock crank position.
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bicycle aligns with the intention of the fitting process. On the 
other hand, changes in joint angles of ~10–14° when saddle 
position is modified have not been associated with changes in 
internal forces (Bini & Hume, 2014). This indicates that errors 
in determining knee angles may not result in large differences 
in bicycle configuration. It is also possible that errors in deter
mining bicycle configuration (e.g., using the MSRA method) 
may not result in differences in perceived comfort (Bini, 2020; 
Priego Quesada et al., 2016). We can also speculate that these 
errors may only affect internal forces in parts of the crank cycle 
where joint loads are low (Bini, 2021). Therefore, further stu
dies are needed to explore the implications of determining 
saddle position, for example, using automated marker-less 
methods. This is particularly important in light of the poor 
correlation between both methods and the Reference method 
for the ankle joint at the 3 o’clock position.

In this study, joint angles were measured in two key posi
tions of the crank cycle, which limits the conclusion on 
whether automated methods can accurately track motion. It 
is possible that, in some parts of the crank cycle, errors in 
identifying body segments may be larger. As an example, the 
3 o’clock position presented larger errors than the 6 o’clock 
position for the MSRA method, which can be potentially asso
ciated with the right and left limbs having a very distinct 
position at the 6 o’clock but a more similar position at the 3 
o’clock, leading the automated method to swap sides of the 
skeleton. This though was not the case for the OpenPose 
method as errors were not largely different between crank 
positions. As neural networks are normally trained using 
a broad range of images or people moving (i.e., walking, jump
ing, dancing, etc.), the straight leg observed at the 6 o’clock 
potentially increases the accuracy of the networks to determine 
the skeleton. Therefore, training neural networks with cycling- 
related images is important to further enhance the accuracy of 
the network, particularly when using data to determine joint 
loads.

It is important to note that both CNN-based methods were 
designed considering largely non-cycling-related scenarios 
since they were based on COCO and MPII datasets. 
According to Cao et al. (2021), the MSRA method outper
formed the OpenPose in 12.3 percentual points, considering 
the test set of the COCO dataset. However, our study demon
strates that OpenPose outperformed MSRA when using 
cycling-related images. The MRSA network has been trained 
to analyze images with a resolution of 256 × 192 pixels, while 
the OpenPose network used the whole image resolution. This 
means that OpenPose had increased resolution at each frame 
to determine joint keypoints, potentially explaining its 
increased accuracy. Our results suggest that the vector fields 
(PAFs), which encode the location and orientation of body 
segments, were more effective in determining the segments of 
a person in cycling-related images than the optical flow-based 
approach used in the MSRA method. This means that when 
using optical flow to determine sequential movement, the 
MSRA presented lower capacity than the OpenPose method 
to determine the joints. We believe that these results are 
valuable for computer scientists and engineers when design
ing AI-based methods for detecting human pose and joints. 
The use of the OpenPose to inform bicycle fitting provides an 

opportunity to streamline the analysis of posture on the 
bicycle and automate the extraction of quantitative outcomes 
(i.e., joint angles).

The use of a two-dimensional model is a very popular 
method of obtaining angles from cyclists in clinical and sports 
settings due to the easy access to video recording capability 
through smartphones. However, it is known that two- 
dimensional data presented ~2.2–10° of error in relation to 
three-dimensional data (Fonda et al., 2014; Umberger & 
Martin, 2001). Therefore, it is important that, if automated 
methods are used, errors in determining joint angles via two- 
dimensional analysis do not further increase the known lim
itations of sagittal plane analyses. Further studies should 
explore if the use of three-dimensional marker-less methods 
is feasible to analyze cycling motion, as they showed promis
ing results in other movements (D’Antonio et al., 2021; 
Kanko et al., 2021).

Angles presented in this study were manually digitized 
from the video footage, which may add errors to the true 
measurement of joint angles. However, this element has 
been shown to increase to a trivial magnitude (i.e., <1.5°) 
bias in measuring joint angles in cyclists (Bini & Hume, 
2016) and should be equivalent between methods as all 
involved manual digitization of angles. Therefore, future 
studies should compare intra-cycle data between methods 
to assess the extent of differences. It is also important to 
note that cyclists pedaled at self-selected sub-maximal 
intensity and cadence, which limits the assumption that 
the automated methods will perform similarly during 
higher intensity cycling (e.g., sprinting). Clean background 
was used, but it is unclear if the automated method would 
cope with data obtained in outdoor settings. Moreover, the 
use of online technology to assess cyclists remotely (e.g., 
Zoom, Gmeet, etc.) can facilitate bicycle fitting to be con
ducted via distance, but it is unclear if elements such as 
background and position and orientation of the camera 
would affect the accuracy of the automated methods. 
Videos from this study were collected with standard (640 
× 480 pixels) frame resolution at high frame rate (120 fps), 
which is limited compared to some modern cameras. 
While some smartphones enable slow motion (i.e., high 
frame rate) to be recorded in high resolution, webcams are 
limited to 60 fps, with unclear implications on the perfor
mance of the automated methods. Therefore, future stu
dies should explore changing camera settings in order to 
assess if outcomes from the automated method remain 
appropriate.

The use of publicly available codes to automate human pose 
estimation was also implemented in this study without changes 
to the original code. One improvement that should be 
attempted in future use involves filtering and interpolating 
the joint coordinates as noise was visually observed in the 
videos leading the automated methods to misinterpret the 
location of joint centers. These corrections have been utilized 
in prior research (Serrancolí et al., 2020) and should improve 
the quality of the data, particularly when temporal patterns are 
explored. In addition, exploring the accuracy of these networks 
when videos are recorded at lower frame rate and/or with less 
image resolution should benefit further use of these methods.
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The conclusion is that the OpenPose method presented 
improved accuracy compared to the MSRA method in deter
mining body position on the bicycle, but both methods seem 
feasible to assess implications from changes in bicycle config
uration. The OpenPose method though should be preferably 
used when higher accuracy in determining joint angles is 
required.
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