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ABSTRACT Scene text detection has become an important field in the computer vision area due to the
increasing number of applications. This is a very challenging problem as textual elements are commonly
found in ‘‘noisy’’ and complex natural scenes. Another issue refers to the presence of texts encoded into
different languages within the same image. State-of-the-art solutions rely on the use of deep neural network
approaches or even ensembles of them. However, such solutions are associated with ‘‘heavy’’ models,
which are computationally expensive in terms of memory and storage footprints, which hampers their use
in real-time mobile applications. In this work, we introduce Pelee-Text++, a lightweight neural network
architecture for multi-lingual multi-oriented scene text detection, especially tailored to running on devices
with computational restrictions. Additionally, to the best of our knowledge, this is the first work to evaluate
the performance of text detection methods in commercial smartphones. Over this scenario, Pelee-Text++
processes 2.94 frames per second and it is the only evaluated approach that did not cause memory issues on
smartphones, even using an input image of 1024× 1024 pixels. Our proposal achieves a promising trade-off
between efficiency and effectiveness, with a model size of 27Megabytes and F-measure of 91.20%, 85.78%,
81.72%, 80.30%, 82.53% and 66.51% on ICDAR 2011, ICDAR 2013, ICDAR 2015,MSRA-TD500, ReCTS
2019 and Multi-lingual 2019 datasets, respectively.

INDEX TERMS Text detection, mobile-network, mobile devices, multi-oriented text, multi-lingual, convo-
lutional neural network.

I. INTRODUCTION
Nowadays, the detection and recognition of scene texts have
become important topics in machine learning and computer
vision areas due to the daily use of digital cameras and the
huge amount of applications related to this field, such as
mobile and context-aware services [60], traffic sign detec-
tion [10], [11], image retrieval [58], blind person assis-
tance [61], and text translation [53]. In fact, new applications
are still emerging, for example, those related to the interpreta-
tion of scene textual content (Figure 1). However, both scene
text detection and recognition are more challenging than
traditional document processing given the presence of dif-
ferent types of text and scenarios related to complex/natural
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backgrounds, font styles and sizes, blurring, orientations,
occlusion, aspect ratios, perspective projections, among oth-
ers. Despite the application, the text detection task plays
an important role in the final recognition result since this
task precedes the recognition step. Thus, the development
of a good text detector is paramount to reach efficient and
effective scene text recognition systems.

Addressing text detection is difficult since text images
have different visual properties depending on their source, for
example, born-to-digital (e.g., e-mails, advertisements, Web
images) or incidental/focused scene text (scene text images
taken from wearable cameras or urban captures). Addition-
ally, text could appear with arbitrary-orientations, perspective
distortion, and be associated with even more challenging sce-
narios, for example, those related to the presence of different
languages in the same scene. In this regard, several public
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FIGURE 1. Scene Text Visual Question Answering [2].

datasets have been built to foster the creation of solutions to
overcome these problems, such as SynthText [12], ICDAR
2011 [45], ICDAR 2013 [24], ICDAR 2015 [25], ReCTS
2019 [64], Multi-lingual 2019 [40], and MSRA-TD500 [59].

Given the complexity of the text detection problems,
sophisticated supervised approaches have been used in the
state-of-the-art solutions. Moreover, the detection quality
impacts directly on the recognition result, i.e., whether a
predicted bounding box covers a entirely word or just part
of it impacts on the effectiveness of recognition algorithms.

Despite the huge amount of methods developed to text
detection proposed in the last years, most of these studies
are focused on improving their results without concerns about
their model size. Those approaches use VGG-16 [1], [4], [8],
[29], [36], [65], [68] and ResNet [31], [32], [34], [38], [52],
[63] as feature extractors, producing models with a size rang-
ing from 80Megabytes [1] to more than 350 Megabytes [38].
For this reason, in practice, their use on devices with compu-
tational constraints turns non-viable.

Recently, the edge computing concept has empowered
the next generation of machine learning applications [26].
Conversely to cloud computing, edge computing is revo-
lutionizing the way embedded systems are architected by
moving complex processing and analysis to end devices (e.g.,
mobile andwearable devices). Cloud services brought several
advantages for machine learning, such as fast computation
and almost unlimited storage; however, its throughput and
response time is not enough to ensure its use in real-time
applications, which are also impacted by the latency fluctua-
tion in wide-area networks. Furthermore, one of the biggest
concerns in mobile devices is the energy consumption,

and data transferring over the network implies more
energy [5], [26].

The use of tiny neural network models, as a part of
fully deployed mobile applications, has some advantages
for real-time applications [13], [26], such as: (a) efficiency,
in terms of time processing, is one of the most important
considerations for real-time mobile applications; (b) local
processing, even with the huge amount of online services,
some bottlenecks on cloud services or fluctuations on net-
work latency could have a big impact on the performance
of real-time applications, and even the privacy leaks could
increase; (c) energy consumption is also affected when large
deep learning models are used.

Related to text detection, there exist few works using
lightweight mobile-oriented neural networks [6], [7], [9].
Some of the approaches based on tiny neural network mod-
els [7], [9] are limited to the detection of horizontal text.
In this vein, our previous work, Pelee-Text [6], introduced
a light architecture for multi-oriented scene text detection,
reaching competitive results in several datasets with a model
size of 40 Megabytes.

Herein, based on Pelee-text [6], we came up with Pelee-
Text++. Pelee-Text++ is the result of a comprehensive
study of Pelee-Text.We evaluated the impact on the efficiency
and effectiveness of each one of its main components: (i) eval-
uation of the different convolutional blocks both in behav-
ior and number, (ii) influence of aspect ratios, (iii) impact
of different scales of input images. As a result, Pelee-
Text++ is an even more compact and simpler neural net-
work architecture for multi-lingual multi-oriented scene text
detection suitable for running on devices with computational
constraints.

Pelee-Text [6] and Pelee-Text++ are compact neural net-
works for text detection that have reached a good trade-off
between efficiency and effectiveness, becoming promising
approaches to mobile applications. Both use the same kind of
convolutional blocks: (i) stem block, (ii) transitional blocks,
and (iii) dense blocks. However, the main difference between
them is the structure of their backbones. Pelee-Text has a
total of 27 blocks (1 stem-block, 5 transitional-blocks, and
19 dense-blocks), while Pelee-Text++ has been compressed
to 14 blocks (1 stem-block, 5 transitional-blocks, and 8 dense-
blocks). Additionally, Pelee-Text++ uses 1, 2, 3, 1/2, and
1/3 as aspect ratios, cutting-off the 5 and 1/5 aspect ratios used
by Pelee-Text. The new backbone of Pelee-Text++ along
with the use of less aspect ratios brought a huge impact on
the efficiency and compacting even more the model size.

Regarding efficiency and effectiveness, in most of the sce-
narios, Pelee-Text++ outperforms the results of our previous
work.Moreover, in a real mobile scenario and considering the
best setup (input image of 300× 300 pixels), Pelee-Text++
is 1.46× faster than Pelee-Text and, in the worst case (input
image of 1024×1024 pixels), Pelee-Text++was just 41.50%
of the processing time of Pelee-Text. Finally, in terms of
model size, whereas Pelee-Text has a weight of 40MB, Pelee-
Text++ is only 27MB.
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Our new proposal was evaluated over six public avail-
able datasets: ICDAR 2011 [45], ICDAR 2013 [24],
ICDAR 2015 [25], MSRA-TD500 [59], ReCTS 2019 [64],
and Multi-lingual 2019 [40] obtaining competitive results
against state-of-the-art methods. Experimentally, our pro-
posal demonstrated its ability to work over scenarios with
different particularities. Pelee-Tex++ is at least 2.96 times
smaller than state-of-the-art methods, with a processing time
of 23.25, 15.06, and 3.65 FPS, for its 768, 1024, and
multi-scale versions.

Furthermore, to the best of our knowledge, this is the first
study that evaluates the efficiency of several text detection
methods in a real mobile scenario. For this, we assessed their
performance in smartphones using four different scales of
input images. These experiments showed the drawbacks of
state-of-the-art methods when a real mobile environment is
used. On mobile devices, our proposal is capable of process-
ing 2.94 FPS, being at least 5.5 times faster than CRAFT [1],
which is one of the best methods in several datasets with a
model size of 80 Megabytes.

Our contributions can be summarized as:

1) Design of a lightweight neural network architecture to
detect multi-lingual multi-oriented scene texts.

2) Evaluation of text detection methods in devices
with computational constraints, i.e., performance of
well-known text detection methods in commercial
smartphones.

The remainder of the paper is organized as follows.
In Section II, we provide an overview of related work.
Our method, Pelee-Text++, is presented in Section III.
Section IV details the adopted experimental proto-
col. Section V presents and discusses achieved results.
Finally, Section VI presents the conclusions and future work.

II. RELATED WORK
A. SCENE TEXT DETECTION
During the last years, Convolutional Neural Networks (CNN)
have become promising approaches to deal with several
challenging scenarios in scene text localization, such as
multi-scale detection [14], oriented text detection [29], text
detection in complex backgrounds [12], and arbitrary-shaped
text [36].

The proposed approaches have used different techniques
for dealing with scene text detection, most of them are
focused on regression [6], [28], [31], [51], [57], segmen-
tation [4], [8], [56], [56], or the combination of both
techniques [35], [38], [39], [52], [63]. Additionally, some
proposals have merged the detection and recognition tasks as
a jointed pipeline for improving their results [34], [38], or had
even used knowledge distillation [68].

In the vein of regression methods, generally, this type of
approaches generate two points (xmin, ymin, xmax, ymax) [28],
four points (x1, y1, x2, y2, x3, y3, x4, y4) [6], [18], [29], [63],
or adaptive number of points [51] as a bounding box pre-
diction. Furthermore, they predict offsets from predefined

anchor-boxes [6], [28], [29], direct regression for predicting
offsets from a single point [18], or even shape regression [57].

On the other hand, text instance segmentation approaches
have been working on pixel-wise classification for defining
neighborhood linkages [8], salient maps [67], even proposing
progressive scale expansion algorithm [50] to improve the
separation between near text instances.

Recently, some approaches used several branches with
the goal of taking advantage of the fusion of bounding box
regression and text instance segmentation techniques [32],
[35], [39], [52], [63]. Most of those approaches are inspired
by a well-known object detector, Mask-RCNN [16]. In a gen-
eral way, these methods [18], [31] use a multi-scale feature
extraction based on Feature Pyramid Networks (FPN) [30],
or even 3D special pyramid mask for a better characterization
of text instances [32]. Next, these features are fed to several
branches, where each one of them has specific tasks, such
as bounding box regression, text instance segmentation or
refinement modules.

Other researches have adopted different text detection
strategies. CRAFT [1] and WeText [48], for example, works
with character-level annotations. CRAFT [1] predicts a
region character score using a Gaussian heatmap and an
affinity score of neighboring characters, while WeText [48]
proposed a weakly-supervised approach to text detection that
works over non-annotated data or weakly annotated data, and
a graph based method is used to define the final results.

For its part, DRRG [65] dealt with text detection using a
graph convolutional network. First, local graphs are created
based on the linkage between text components. Then, a deep
relational linkage is performed based on the previous discov-
ered local graphs and a Breath First Search is applied to join
the linkages for final prediction. Attention maps have also
been used in this area. For instance, GISCA [4] improved
text characterization based on Contextual Attention Mod-
ule (CAM) and a Gradient-Inductive Module (GIM).

Unlike previous works, some researches have fused detec-
tion and recognition tasks. In this type of approaches,
the recognition branch fed the detection one for filtering
false positives in an end-to-end scheme [27], [34], [38].
Additionally, some approaches used data augmentation tech-
niques to improve the results and the generalization of
text detection methods. In this context, generative models
using domain shifts from cross-domain [62] and sampling of
sub-regions of text segments through boostrapping [56] were
proposed.

Current solutions have addressed text detection chal-
lenges by using deep architectures, such as VGG [46] and
ResNet [15], or even ensembles of them, producing mod-
els with a size ranging from 80 Megabytes [1] to more
than 350 Megabytes [38]. Such solutions are computa-
tionally expensive, which makes them unfeasible, in prac-
tice, to be used in devices with computational constraints,
such as memory, computational power, bandwidth and
energy [13]. In this regard, some ‘‘mobile’’ CNN architec-
tures have been already proposed [19], [22], [44], [49], [66],
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i.e., lightweight convolutional neural network architectures
specifically designed for mobile devices.

Based onMobileNetv2 [44], MobText [7] is the state of the
art on ICDAR 2011 [45] with a model size of 37 Megabytes.
Based on the same mobile architecture, Fu et al. [9] proposed
a neural network of just 16 Megabytes inspired by a U-Net
approach [43]. Nevertheless, these two methods were just
evaluated on datasets with horizontal text, since they are
based on the typical rectangular bounding box representation,
which are not able to capture oriented text.

In the same vein, Xue et al. [37] proposed OctShufle,
which uses a combination of ResNet blocks [15] and Shuffle
units [66] to produce a model size of 88.79 Megabytes.
However, it has problems on detecting oriented text. Finally,
Pelee-Text [6], which uses PeleeNet [49] as feature extractor,
appeared as a mobile oriented architecture for multi-lingual
scene text detection with a model size of 40 Megabytes and
promising results on several datasets. Pelee-Text provides a
promising trade-off between effectiveness and model size.

B. LIGHTWEIGHT NEURAL NETWORKS
In several tasks of computer vision, state-of-the-art
approaches have used deep convolutional neural networks
to improve results. However, these approaches tend to go
deeper, increasing the number of parameters without con-
cerns on the amount of operations and the final model size.
For this reason, it is difficult to use these approaches on
devices with computational constraints. In order to overcome
this problem, some works have focused their efforts on the
proposal of lightweight neural networks [22], [42], [44], [66].

MobileNets [19], [44] were proposed as a computational
time and model size efficient neural networks for mobile
applications. These approaches are based on depthwise sep-
arable convolution, where fully convolutional layers are split
into two in order to reduce computational time and the
number of parameters without greatly affecting performance.
Similarly, ShuffleNet [66] applies a grouping approach to
divide channels through a point-wise convolution. In addi-
tion, this approach uses cross-group information flow.

SqueezeNet [23] is another approach focused on reducing
the number of parameters with the goal of compressing the
final model. SqueezeNet replaces most of the 3 × 3 filters
with 1 × 1 filters and reduces the amount of input channels
to 3× 3 filters. In the same vein, Yolo-Lite [22] is a real-time
object detector for non-GPU computers, which is a simplified
version of the network proposed by Yi and Tian [41]. This is
a very compact network that uses just 7 convolutional layers
and does not use batch normalization.

Based on a neural architecture search (NAS), Yi et al.
[69] proposed NASNet as a compact neural network model.
Instead of looking for a complete architecture, the authors
reduced the problem to find the best convolutional layer
architecture. Then, the final neural network is built with
exactly this type of convolutional layers.

Taking advantage of the properties of well-known net-
works [15], [20], [47], PeleeNet was proposed as a feature

extractor. This method uses a stem block to improve the
feature space of the input, two-way-dense layers with differ-
ent filters with the goal of extract relevant features for large
objects, and its bottleneck layer adapts the input dimension
dynamically. Furthermore, the authors built Pelee for object
detection using PeleeNet along with an optimized version of
SSD [33].

Several experiments have demonstrated that PeleeNet is
a very efficient and effective network for scenarios with
computational constraints. In terms of millions (M) of param-
eters, PeleeNet has 5.3M of parameters, using 2.5M and
2.4M less than NASNet-A [69] and ShuffleNet2x [66],
respectively. In addition, PeleeNet is 66% the size of the
MobileNet model and 11.3× smaller than YOLOv2 [41].
On NVIDIA TX2, PeleeNet is faster than MobileNet [19],
MobileNetv2 [44] and ShuffleNet2x [66], especially when
a half-precision floating-point is used. Complementary, for
object detection, Pelee achieved comparable or better results
than MobileSSD [21], Yolov2 [41] and ShuffleNet [66].

III. PROPOSED METHOD: PELEE-Text++

This section presents our proposal, a lightweight convolu-
tional neural network architecture for multi-oriented multi-
lingual scene text detection. More specifically, our goal is to
introduce a competitive and efficient approach more appro-
priate for devices with computational constraints.

A. OVERVIEW
This study presents Pelee-Text++, which reflects our effort
towards the design of a tiny neural network based on recent
works that rely on mobile-oriented architectures, originally
proposed for object detection. More precisely, the solution
introduced in this section is an extension of our previous
work [6], named Pelee-Text. Our architecture is based on
PeleeNet [49] and TextBoxes++ [29] networks. By taking
advantage of their best particularities, we propose a faster and
lighter architecture for detecting scene text, becoming a more
viable solution to be used in constrained processing devices
such as smartphones and tablets.

PeleeNet was proposed by Xu et al. [49] as a novel neu-
ral network architecture for mobile devices. It is a vari-
ant of DenseNet [20] and its main goal was to work on
strict memory and computational constraints. Furthermore,
PeleeNet along with an optimized version of Single Shot
MultiBoxDetector (SSD) [33] was proposed for object detec-
tion. Unlike original SSD, it does not use the 38× 38 feature
map; but two distinct scales of prior-boxes over 19 × 19
feature map instead.

Several experiments, demonstrated that PeleeNet is a very
efficient and effective network for scenarios with computa-
tional constraints. In terms of millions (M) of parameters,
PeleeNet has 5.3M of parameters, using 2.5M and 2.4M less
than NASNet-A [69] and ShuffleNet2x [66], respectively.
Moreover, PeleeNet is 66% the size of the MobileNet model
and 11.3× smaller than YOLOv2 [41]. On NVIDIA TX2,
PeleeNet is faster than MobileNet [19], MobileNetv2 [44],
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FIGURE 2. Overview of Pelee-Text++ architecture.

and ShuffleNet2x [66] when half-precision floating-point is
used. In a complementary manner, for object detection, Pelee
achieved comparable or superior results to MobileSSD [21],
Yolov2 [41], and ShuffleNet [66].

Regarding to a specific bounding box regression approach
for text detection, He et al. [29] proposed TextBoxes++
as an end-to-end convolutional neural network to detect
arbitrary-oriented word bounding boxes. To predict the
regions in the image that contain texts, the authors used
VGG-16 as feature extractor and a modified SSD adapting
some layers in order to detect text with longer aspect ratios.
At the end, a non-maximum suppression (NMS) procedure is
applied to filter the final outputs.

As a result of combining the best of both architectures,
we propose a tiny neural network specifically designed for
scene text detection. In natural scenes, multiple challenging
scenarios emerge, such as different font styles, blurring, ori-
entations, image projections, among others. With the pres-
ence of text with different orientations and particular projec-
tions, the typical rectangular bounding boxes are not enough,
being necessary the use of quadrilaterals.

For that reason, our network predicts quadrilaterals with
points Pn = (xn, yn) in clockwise order (P1,P2,P3,P4),
being P1 the top left point. Each one of the predicted quadri-
laterals is evaluated as containing text or background. More-
over, for a covering most text regions, we dense prior-boxes
based on vertical offsets. Furthermore, we used a simplified
version of SSD [33] with different scales of bounding boxes
over the 19 × 19, 10 × 10, 5 × 5, 3 × 3, and 1 × 1 feature
maps.

B. ARCHITECTURE
An overview of our architecture is presented in Figure 2.
Our feature extractor is composed of five stages. In Stage 0,
we improve the characterization by increasing the number
of channels of the input image. Then, Stages 1 to 4 are

based on two blocks of Two-Way Dense Layers with 3 × 3
convolutions, which have the goal of look for useful features
to describe text regions. Unlike DenseNet [20] and inspired in
PeleeNet, our network manages the channel expansion with
two convolutional paths each one working with half of the
channels. Finally, a transitional convolutional block keeps the
discriminability of the features without impact the number of
channels between stages.

Furthermore, extra convolutional blocks from SSD [33]
corresponding to the 5 × 5, 3 × 3, and 1 × 1 feature maps
are added after Stage 4. Pelee-Text has six text-specific
layers designed to look and define final bounding boxes.
These layers are built considering 3 × 5 kernels, given
than text covers long continuous regions, becoming power-
ful to detect text that usually has longer aspect ratio than
traditional object detection, and also with the presence of
textual elements with some orientation and/or projection.
They perform bounding box prediction and binary bounding
box classification (text or background) at the same time
(x1, y1, x2, y2, x3, y3, x4, y4, confidence).

Our method is based on the regression of offsets taking,
as a starting point, a set of prior-boxes predefined for each
one of the six layers. For these, before predictions, outputs
from five layers pass through residual blocks. Those layers
are the last layer of Stages 3 and 4 along with the three layers
of the simplified version of SSD. The feature map from the
last layer of Stage 3 is used twice using different scales of
prior-boxes.

Furthermore, we used some aspect ratios (1, 2, 1/2, 3 and
1/3) with the goal of increasing the amount of default prior-
boxes. Applying these aspect ratios, we produce larger hor-
izontal boxes, and more important, vertical prior-boxes are
generated. This initial set of prior-boxes is the base for the
regression of multi-oriented quadrilaterals. Additionally, for
vertical crowded text regions, we increase the number of
prior-boxes applying a dense vertical distribution in order
to minimize the number of text elements lost in this type
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of scenario. For guiding the training, we use the loss function
from [33], which involves the confidence (Lconf ) and local-
ization (Lloc) losses:

L(p, c, l, g) =
1
N
(Lconf (p, c)+ αLloc(p, l, g)), (1)

where p are the estimated bounding boxes, c is the confidence
of being text, l is the predicted localization, g corresponds to
the ground truth, N is the number of matched boxes, and α
is the weight for the Lloc. Furthermore, we used the smooth
L1 loss for Lloc and the soft-max loss for Lconf .

Additionally, during testing, we exploit a multi-scale pro-
cedure [6], [29], [34], which uses input images with four
different sizes: 384, 768, 1024, and 1536. In Table 1, we can
see the heatmaps produced by the bounding box source layers
with those four scales as inputs. Each one of these feature
maps captures complementary information about textual ele-
ments of different sizes, and exploits the relation between
different scales and bounding box sizes. The smaller scales
(384, 768) allow to detect larger objects, while the larger
scales (1024, 1536) are able to capture small textual elements.
At the end, before presenting final predictions, a cascade
NMS based on the Intersection over Union (IOU) is per-
formed to discard overlapped bounding boxes from the four
scales using an IOU ≥ 0.1.
Currently, neural networks are state-of-the-art solutions for

scene text detection. However, their solutions are more con-
cerned with effectiveness than efficiency, some works even
fuse two or more deep architectures for improving results.
In terms of Megabytes (MB), they produce models ranging
from 80MB [1] to more than 350MB [38]. In this vein, one
of the main points of our proposal is its compact architecture
with a weight of only 27MB and 7 millions of parameters,
being at least 2.96× smaller than its counterparts, becoming
a very promising architecture for mobile applications.

C. ABLATION STUDY
The proposed architecture was built as a result of an ablation
study considering our previous approach, Pelee-Text [6]. The
objective is to discover the impact of each component and
propose our new lighter neural network architecture for scene
text detection. Our main concern is to improve its efficiency
without hurting too much its effectiveness. In this vein,
the impact of four main components are evaluated: (i) stem
block responsible for improving the characterization of the
image, (ii) dense blocks with the goal of looking for useful
features, (iii) transitional blocks that keep the discriminabil-
ity between stages, and (iv) residual blocks to improve the
feature representation before the bounding boxes prediction.
Therefore, we cut it off one component at the time to evaluate
its influence on our network (See Table 2).
As result, we could see that Stem and Residual blocks are

very important as part of the feature extractor, and how the
number of dense blocks in the different stages could influence
the results and model size of our model. Finally, we selected
the architecture built in the sixth setup based on the trade-off

between F-measure and model size compared to our base-
line, Pelee-Text [6]. Our final architecture has a model size
of 27 Megabytes reaching a model compression of 32.5%
compared to the baseline with a drop of just 0.38 percentage
points on F-measure. More important, as we will explain
later, this architecture brings a huge advantage compared to
Pelee-Text when a realmobile environment is used to evaluate
its performance.

IV. EXPERIMENTAL SETUP
In this section, we describe the datasets, metrics, and pro-
tocols used to asses the effectiveness of our method and its
counterparts.

A. DATASETS AND METRICS
Initially, for performing experiments and evaluating our mod-
els, we used datasets andmetrics already available andwidely
used in the literature. Such datasets present different par-
ticularities. We evaluated our proposal over six well-known
public available datasets: ICDAR 2011 [45], ICDAR
2013 [24], ICDAR 2015 [25], ReCTS [64], Multi-lingual
2019 (MLT) [40], and MSRA-TD500 [59].

The SynthText [12] and MLT 2019 datasets were used for
pre-training since some datasets have few images for training.
Table 3 shows details about each dataset, such as the number
of images, text-orientation, and languages that appear in their
images.

Regarding to the metrics, the effectiveness of our method is
measured in terms of Recall (R), Precision (P), and F-measure
(F1). More precisely, we evaluated our results using the eval-
uation tool public available by the International Conference
on Document Analysis and Recognition (ICDAR)1 in each
one of its competitions. For ICDAR 2013 dataset, we used the
ICDAR13 metric, whereas for the MSRA-TD500 dataset, its
ground truth is represented in quadrilateral format (P1, P2,
P3, P4). Furthermore, the efficiency takes into account the
processed Frames per Second (FPS), as well as memory and
storage footprints.

B. TRAINING PROTOCOL
For the experiments, we followed a four-stage training
scheme where difficult cases were not considered, i.e., text
cases with transcription ‘‘###’’ in the ground truth. First,
we pre-trained our models in two stages using SynthText
(Stage 1) and MLT 2019 (Stage 2) datasets with an input
image size of 384, then two fine-tuning stages were per-
formed on each dataset with 384 and 768 as input image size,
preparing our network for multi-scale detection. For 384 and
768 training stages, we used a batch size of 48 and 20, respec-
tively. Parameter values, such as learning rate, negative ratio,
Lloc weight (α), and weight decay, were defined empirically
through several experiments in the training set.

We pre-trained our models during 10 epochs on SynthText
and 200 epochs on MLT 2019. Moreover, we used the

1https://rrc.cvc.uab.es (As of July 2020).
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Stochastic Gradient Descent (SGD) to optimize our network
and the ‘‘Xavier’’ technique for initializing the weights. The
learning rate, negative ratio and Lloc weight (α), weight decay,
and momentum were 5 × 10−3, 3, 0.8, 5 × 10−4, and 0.9,
respectively. In Stage 3, we trained for about 300 epochs over
almost all the datasets, except for the MSRA-TD500 given
that the bounding boxes of this dataset present the particular-
ity of covering text lines instead of words, so we trained for
600 epochs.

Additionally, depending on the stage and dataset, we used
different values for parameters, such as learning rate, steps for
learning rate decay, Lloc weight, ratio between the negatives
and positives, and number of iterations. Table 4 shows the
parameter values used during the fine-tuning stages.

For testing, we discarded the predictions with a detection
score less than 0.5, 0.6, 0.5, 0.8, 0.6, and 0.4 for ICDAR
2011, ICDAR 2013, ICDAR 2015, MSRA-TD500, ReCTS,
and MLT. At the end, NMS was applied with an overlap
threshold of 0.1 for all datasets.

All experiments were conducted on an Intel(R) Core(TM)
i7-8700 CPU @ 3.20GHz with 12 cores, 64GB of RAM,
Ubuntu 64-bits OS and two GeForce GTX 1080ti.

C. MOBILE PROTOCOL
In order to evaluate the efficiency of our proposal against
some of the state-of-the-art methods in mobile devices,
we executed experiments over three smartphones: Motorola
Moto G6 Play, Asus Zenfone 5, and Xiaomi Mi 9T. These
smartphones have different specifications which are detailed
in Table 5. As we can see, these smartphones have different
RAMMemory capacity ranging from 3GB to 6GB, and with
different kinds of processors and clock speed (from 1.4GHz
to 2.2GHz).

Moreover, to assess the efficiency of each method, we used
the test set of ICDAR 2015 that contains 500 images with a
variety of natural scenes. We computed the mean time on the
whole test set, and we used four different scales of images
(300, 384, 768, and 1024) to evaluate memory footprint and
performance in each one of these scenarios.

For this, we built a basic Android app for running different
neural network models. Our implementation was based on
three Github repositories corresponding to Caffe,2 PyTorch,3

and Tensorflow 4 implementations.

V. RESULTS AND DISCUSSION
This section presents the results of our proposal against sev-
eral state-of-the-art methods, considering three setups: results
on datasets containing English text (Section V-A), multi-
lingual text (Section V-B), and experiments related to effi-
ciency aspects onmobile devices (SectionV-C). Additionally,
we also collected information about the model size and/or

2Caffe: https://github.com/sh1r0/caffe-android-lib (As of July 2020).
3Pytorch: https://github.com/pytorch/android-demo-app (As of

July 2020).
4Tensorflow: https://github.com/tensorflow/. . . /examples/android (As of

July 2020).

number of parameters of the baseline methods. That informa-
tionwas taken from their respective papers or authors’ official
Github.

In order to deal with amore specific field, some approaches
to text detection are adapted or inspired by well-known
object detectors [38]. In the vein of mobile-oriented neural
network architectures, Liu et al. [7] proposed MobText as
a text detector approach based on MobilenetV2 [44]. Their
proposal achieved the best trade-off between efficiency and
efficacy compared to Yolov3 [42] and SqueezeDet [54]. For
this reason, we usedMobText [7] as a baseline to compare our
approach against mobile-oriented text detection methods.

A. DETECTING ENGLISH TEXT
We evaluated our proposal in three scenarios containing
English text, i.e., born-digital images (ICDAR 2011), natural
scenes with horizontal or near horizontal text (ICDAR 2013),
and natural scenes with arbitrary-oriented text (ICDAR
2015).

First, we evaluated our proposal on the ICDAR 2011,
which contains digital-created images that have some JPEG
artifacts making this dataset a very different scenario com-
pared to datasets collected from natural scenes. As we can
see in Table 6, Pelee-Text++_MS obtained a F-measure of
91.20% outperforming most of the methods, even our previ-
ous version, Pelee-Text, and it is only placed behind Mob-
Text [7] which is the state-of-the-art on this set of images.

On ICDAR 2013, a dataset from natural scene images with
presence of horizontal or near horizontal text, Pelee-Text++
reached competitive results with F-measure of 79.72% and
85.78% for its 768 and multi-scale versions, defeating
Pelee-Text with a model 13 Megabytes lighter (see Table 7).
Despite having a lower F-measure compared to state-of-the-
art methods, such as CRAFT [1], MaskTextSpotter [38],
PMTD [32] and FTPN [31]; our proposal obtained a good
trade-off between efficacy and model size. Figure 4a shows
the balance between effectiveness and model size compared
to state-of-the-art methods.

Compared to the best methods, our proposal is 12.96×
smaller than MaskTextSpotter [38] and 2.96× than
CRAFT [1]. On the other hand, focusing on methods with
light models, MobileNetv2+UNet [9] (16MB) and Mob-
Text [7] (37MB) have F-measures with 9.78 percentage
points lower than Pelee-Text++ (27MB). Although Pelee-
Text++ has a competitive result, we have to work on the
missing cases with special focus on the detection of text
in images with the presence of blurring and occlusion (see
Figure 3b).

ICDAR 2015 is a dataset that came up with new variants
of text orientations in natural scenes, i.e., vertical text, and
text with visual projections. This dataset works over quadri-
laterals instead of the typical rectangular bounding boxes.
For that reason, MobileNetv2+UNet and MobText has not
been tested on this dataset. As these methods use a typical
rectangular representation, they are not tailored to the local-
ization of oriented text. FCN [67] (57MB) and OctMLT [37]
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TABLE 2. Ablation study using ICDAR 2015.

TABLE 3. Datasets used in our experiments.

TABLE 4. Training protocol values.

TABLE 5. Smartphone specifications.

(88.79MB) are approaches with models relative smaller than
most of the methods. They obtained F-measures of just 54.00
and 69.60, which are 27.72 and 12.32 percentage points less
than Pelee-Text++.

Pelee-Text++ outperformed Pelee-Text on ICDAR 2015,
and reached competitive results against state-of-the-art

approaches (FOTS [34], PMTD [32] and PDR [27]); our
method was 6.3× and 4.99× smaller than PMTD and
FOTS, respectively. Figure 4b shows the effectiveness of
each method vs their model size, our proposal is a promis-
ing approach considering the trade-off between efficacy and
model size. Pelee-Text++was very close to the best methods
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FIGURE 3. Detection results of our proposed method: (a) correct detections; (b) some failure cases.

regarding to the Precision; nevertheless, it still missed words
as the Recall score shows. Our model had problems to detect
vertical word cases and when it does, very low confidence
values are assigned (see Figure 3b)).

Finally, as we can observe in Table 7 and Table 8, almost
all of the methods are based on VGG-16 [46] and ResNet [15]
networks, which lead to heavy models in terms of disk usage.
Furthermore, some of them used these networks along with
a Feature Pyramid approach [30], and even creating several
branches to improve text detection without concerns on their
model size hampering their use on devices with computa-
tional constraints.

On the other hand, Pelee-Text++ is a promising tiny neural
network architecture that reached competitive results using a
light architecture favorable for mobile devices, as Figure 3a
shows. Additionally, our single scale versions of 768 and
1024 achieved good results and they ran at 23.25 and 15.06
FPS, respectively, while our multi-scale version (384, 768,
1024 and 1536) ran at 3.65 FPS.

B. DETECTING MULTI-ORIENTED MULTI-LINGUAL TEXT
We have evaluated Pelee-Text++ on ReCTS [64], MSRA-
TD500 [59] and MLT 2019 [40], which are more challenging

TABLE 6. Text detection results on ICDAR 2011 dataset.

scenarios than ICDAR 2013 and ICDAR 2015 datasets.
ReCTS and MSRA-TD500 are datasets containing English
and Chinese text, and they are line-level datasets, i.e., their
bounding boxes cover lines of text instead of single words.
On the other hand, MLT 2019 is a dataset containing images
with texts belonging to ten different languages: Chinese,
Japanese, Korean, English, French, Arabic, Italian, German,
Bangla, and Hindi (Devanagari). This multi-lingual task also
takes into account punctuation and math symbols present in
several images.

Table 9 shows the effectiveness of diverse methods
on MSRA-TD500. Pelee-Text++ achieved very promising
results and placed very close to DRRG [65], which is the
best approach over this dataset. The Precision obtained for
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TABLE 7. Text detection results on ICDAR 2013 dataset.

TABLE 8. Text detection results on ICDAR 2015 dataset.

Pelee-Text++ was comparable with DRRG, but recall needs
to be improved. This is a dataset with several vertical text
cases, scenario in which our method has problems to detect

and/or assign high confidence values. Nonetheless, as we can
see in Figure 4c in terms of disk usage, the model of DRRG
is 5.7× larger than Pelee-Text++.
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FIGURE 4. Effectiveness vs model size.

TABLE 9. Text detection results on MSRA-TD500.

On the ReCTS [64] dataset, our method obtained a
F-measure of 82.53%. However, there not exist works in the
literature providing results over this dataset. Then, we do
not have information to compare our proposal against other
approaches in terms of effectiveness and model size.

Our proposal reached a very promising trade-off between
efficacy and model size. We can notice that it was able
to detect both English and Chinese texts, as depicted in
Figure 3. Experimental results showed that Pelee-Text++

TABLE 10. Text detection results on MLT 2019.

outperformedwell-knownmethods, such as PixelLink [8] and
TextSnake [36] not only in effectiveness but also in terms of
the size of the model. Concerning to the best methods and
their models size, CRAFT [1] and DRRG [65] obtained better
results than Pelee-Text++; nevertheless, their models were
2.96 and 5.7 times larger than our proposal.

Nowadays, MLT 2019 [40] is one of the most challenging
datasets for multilingual text detection; but, there not exist
much papers showing the performance of methods over this
dataset. For this reason, Table 10 shows results taken from
the competition dashboard considering only themethods with
an associated paper. As we can see, LOMO [63] is the state-
of-the-art method with a F-measure of 83.59%, followed
by PMTD [32], CASCADE-RCNN [3], CRAFT [1], and
PSENet [50] with 82.53%, 78.38%, 70.86%, and 65.83%
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TABLE 11. Processing time on smartphones.

of F-measure, respectively. It is worth mentioning that
CASCADE-RCNN [3] was cited in the competition site as
the associated paper for one of the results. The submission,
however, does not have a well-explained description about
the modifications of this network for detecting multilingual
text.

Furthermore, with respect to the remaining approaches,
as mentioned before, all those methods are based on deep
architectures, such as VGG and ResNet. For instance, LOMO
(without information about its model size) and PMTD
(170MB) use ResNet-50 along with FPN, whereas CRAFT
(80MB) and PSENet (110MB) use VGG-16.

Additionally, LOMO and PMTD, the top-2 methods on
this dataset, use several branches for specific tasks in order
to improve results but impacting directly on their model
size. In contrast, Pelee-Text++, with a model size of 27MB,
obtained better results than PSENet (4.07× larger), and it was
close to CRAFT (2.96× larger). Similarly as we described
before, our network has to be improved with regard to the
detection of vertical align text. One possible research venue
concerns the use of a different training protocol specifically
tailored to this multi-lingual scenario.

C. RESULTS ON MOBILE DEVICES
This section presents the results of our proposal against five
methods on three smartphones (Motorola Moto-G6, Asus
Zenfone 5 and XiamoiMi T9). Details about the smartphones
and the app are described in Section IV-C.

For comparison purposes, we used the models available
on the authors’ official GitHub. Along with our proposal,
the methods considered for evaluation were: Pelee-text [6],
MobText [7], TextBoxes++,5 CRAFT,6 and PSENet.7 These

5https://github.com/MhLiao/TextBoxes_plusplus (As of July 2020).
6https://github.com/clovaai/CRAFT-pytorch (As of July 2020).
7https://github.com/whai362/PSENet (As of July 2020).

methods were implemented using different frameworks:
Pelee-Text, Pelee-Text++, and Textboxes++ used Caffe,
MobText was implemented on Tensorflow, whereas CRAFT
and PSENet used Pytorch. These experiments only consid-
ered the processing time of each model to generate its outputs
without taking into consideration neither pre or post process-
ing procedures of each approach.

Table 11 presents the processing time and standard devi-
ation of each model over different smartphones to process
an image using four different scales: 300 × 300, 384 × 384,
768 × 768, and 1024 × 1024. As we can see, PeleeText++
was the onlymethod that ran on all three smartphones without
causing memory issues with the four scales. Moreover, it had
the fastest inference time in all scenarios, except for an image
of size 300 × 300, where the best was MobText. As we
explained in previous sections, MobText is a network specifi-
cally designed for workingwith image input size of 300×300.
Additionally, this method has limitations for scenarios with
oriented text where quadrilateral representation is needed.

TextBoxes++, the method with the larger model size
(133MB) in this experiment, was not able to run with image
size of 768 and 1024 in any of the three smartphones, causing
memory problems. OnMotorolaMoto-G6with 3GB ofmem-
ory RAM, Pelee-Text, CRAFT, and PSENET causedmemory
issues with an image size of 1024. Compared to CRAFT,
one of the state-of-the-art methods on the datasets evaluated
in this work, Pelee-Text++ was 7.44×, 7.89×, and 8.76×
faster using an input size of 300, 384, and 768, respectively.

On Asus Zenfone 5 with 4GB of memory RAM, all the
methods executed faster. Over this environment Pelee-Text,
CRAFT, and PSENet could perform inference even with an
image size of 1024. Respecting to the inference time onMoto-
G6, Pelee-Text++ had a time reduction of 77.77% on the
300 scale image, 41% on the 384, 48.09% on the 768 and
65% with an image size of 1024. Furthermore, considering

223184 VOLUME 8, 2020



M. Córdova et al.: Pelee-Text++: A Tiny Neural Network for Scene Text Detection

FIGURE 5. Efficiency on XIAOMI Mi T9 using different scales for input image.

the best time of eachmethod, our proposal was 1.46×, 5.94×,
4.83×, 10.29× faster than Pelee-Text, CRAFT, PSENet,
and TextBoxes++, respectively. In contrast, considering the
worst time of each one, which is when an input image
of 1024 is used, Pelee-Text++ was just 41.50% of the pro-
cessing time of Pelee-Text, 14.40%of the CRAFT’s inference
time, and 10.48% of the PSENet.

Figure 5 shows the performance of the assessed methods
on XIAOMI Mi T9, which has 6GB of memory RAM. Even
on this smartphone, TextBoxes++ could not complete its
inference when the input image was 768 and 1024 because of
memory issues. On the other hand, MobText reached the best
time when an input image of 300, but it was tested only over
this scenario due to its nature of being specifically designed
for this input size.

Additionally, we can see how the gap between tiny vs large
models increases with a bigger input image. Without consid-
ering MobText and TextBoxes++, because of the previous
related issues, the gap between Pelee-Text++ (best time) vs
the worst time was of 2.48 seconds for an image of size 300,
while for 1024 there exist a huge difference of 14.32 seconds.

It is difficult to compare methods implemented with differ-
ent frameworks and programming languages, but the experi-
ments performed on three commercial smartphones showed a
big gap in efficiency between the approaches based on large

deep learning models and our proposal. Finally, based on
these results and the effectiveness obtained by the methods
in the evaluated datasets, Pelee-Text++ seems to be a very
promising architecture for text detection being a light, fast,
and competitive approach vs state-of-the-art methods. Pelee-
text++with amodel size of 27MBwas capable of processing
2.94 FPS in a real mobile setup, being at least 5.5 times faster
than CRAFT, which is one of the best methods in several
datasets.

VI. CONCLUSION
Unlike other works in the text detection field, which has been
increasing themodel size of their approaches adopting the use
of very deep architectures or even fusing several task-specific
branches, we presented a very promising lightweight neural
network for dealing with scene text detection and with special
focus on measuring the performance of our proposal against
state-of-the-art methods in mobile devices.

We proposed Pelee-Text++, a mobile-based convolutional
neural network specifically designed for detecting text which
usually has a longer aspect ratio. One of the main problems
is to capture text with some types of orientation that are not
fully covered by rectangular bounding boxes. For that reason,
our approach uses quadrilaterals instead.
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The experimental results over five well-known datasets
involving born-digital images, horizontal/vertical text
aligned, and multi-lingual setups in real scene images, show a
great performance of the Pelee-Tex++ in terms of effective-
ness and efficiency. Our network obtained competitive results
against state-of-the-art methods and showed a very promising
trade-off between effectiveness and model size. On GPU,
it runs at 23.25, 15.06 and 3.65 FPS for our 768, 1024 and
multi-scale versions, respectively. More important, our pro-
posal demonstrated its efficiency in three smartphones, being
faster than well-known methods. Pelee-Text++ has a model
size of just 27 Megabytes and processes 2.94 FPS on a
smartphone being at least 5.5 times faster than CRAFT,which
is one of the best methods in the text detection area.

Concisely, we demonstrated that our approach is more
appropriate for restrictive computing scenarios. Pelee-
Text++ presents outperforming results in terms of time pro-
cessing and model size reduction, becoming a promising
approach to avoid disk usage and RAM memory consump-
tion problems in mobile devices. Despite of the competi-
tive results reached by Pelee-Text++ in arbitrary-oriented
(horizontal and vertical text) and multi-oriented text; one of
the limitations of our proposal is that Pelee-Text++ is not
capable of working well on datasets presenting irregular and
curved text because of its nature, i.e., prediction of quadrilat-
erals that do not fit well in these types of scenarios. We intend
to address these issues in future works.

Additionally, future research efforts will focus on smart
data augmentation strategies, for instance, rotation, cropping,
among others, for detecting the missing cases, such as text in
images with the presence of blurring and occlusion, detecting
(near)-vertical textual elements. Furthermore, the proposal
of training and testing protocols for multi-lingual scenarios,
and evaluation of the impact of model compression methods
for obtaining a more compact neural network without loss of
effectiveness.
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