
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021 7213

Measuring Economic Activity From Space: A Case
Study Using Flying Airplanes and COVID-19

Maurício Pamplona Segundo , Member, IEEE, Allan Pinto , Member, IEEE, Rodrigo Minetto , Member, IEEE,
Ricardo da Silva Torres , Member, IEEE, and Sudeep Sarkar , Fellow, IEEE

Abstract—This work introduces a novel solution to measure
economic activity through remote sensing for a wide range of spatial
areas. We hypothesize that disturbances in human behavior caused
by major life-changing events leave signatures in satellite imagery
that allows devising relevant image-based indicators to estimate
their impact and support decision-makers. We present a case study
for the COVID-19 coronavirus outbreak, which imposed severe mo-
bility restrictions and caused worldwide disruptions, using flying
airplane detection around the 30 busiest airports in Europe to quan-
tify and analyze the lockdown’s effects and postlockdown recovery.
Our solution won the rapid action coronavirus earth observation
(RACE) upscaling challenge, sponsored by the European Space
Agency and the European Commission, and now is integrated into
the RACE dashboard. This platform combines satellite data and
artificial intelligence to promote a progressive and safe reopening
of essential activities. Code, trained model, and data are available
at https://github.com/maups/covid19-custom-script-contest.

Index Terms—CNN-based object detection, COVID-19
pandemic, human and economic activity assessment, remote
sensing.

I. INTRODUCTION

OUR planet is experiencing an increase in disasters [1] and
disease outbreaks [2] over the past decades. Therefore,

developing methods and tools to provide meaningful informa-
tion for assertive decision-making during emergencies, thus
implementing safety and welfare measures, is of paramount
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importance. Such a demand has led the research community
to focus on finding indicators to support the different phases
of emergency management [3]–[7]. One of the main challenges
in designing an indicator, especially when its coverage area is
beyond the country level, is collecting data that helps analyze
a phenomenon and improves our understanding of its causes
and symptoms. Information sources such as cell phone mobility
data [8], airlines tracking information, social media, etc., have
many limitations that hamper the process of integration, such as
multiple providers, varying technologies, lack of infrastructure,
sovereignty restrictions, and language mismatch, to list a few.
We hypothesize that disruptions of this magnitude impact social
behaviors and leave signatures in satellite imagery that can be
automatically detected and quantified. And unlike other data
sources, remote sensing stands out for its global coverage and
versatility—it can integrate new indicators and new locations
with little effort—while eliminating collection and format con-
version complications. It is a single source for a variety of indi-
cators across geographical boundaries. These characteristics are
highly advantageous in fast response scenarios. Moreover, satel-
lite imagery availability is growing fast, with several high-level
application programming interfaces (API) offering numerous
forms of access to different earth observation databases. Some
examples are the Copernicus Open Access Hub,1 Sinergise’s
Sentinel Hub,2 Maxar’s SecureWatch,3 and Planet’s Data API.4

The most recent global crisis, yet to be resolved, is the
COVID-19 coronavirus pandemic. As of April 2021, this out-
break reached an unprecedented scale, with more than three
million deaths and more than 140 million confirmed cases [9].
According to the United Nations’ framework for the immediate
socioeconomic response to COVID-19 [10], this critical period
is far more than a health hazard. The socioeconomic impact is
tremendous and will increase poverty and inequalities globally,
jeopardizing lives and livelihoods, especially for vulnerable
groups. Other issues include the lack of adequate social pro-
tection, losses in income and jobs, increased food insecurity,
and a decline in global trades. These problems show the value
of acting fast to mitigate adverse effects when a proper response
is not timely possible and the recovery extension is unknown. To
support such actions, we combine machine learning and satellite
data to provide accessible COVID-19 information agilely.

1[Online]. Available: https://scihub.copernicus.eu/
2[Online]. Available: https://www.sentinel-hub.com/
3[Online]. Available: https://www.maxar.com/products/securewatch
4[Online]. Available: https://developers.planet.com/
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Researchers explored different human signatures visible from
space in the literature. Night-time lights disclose urbanization
and population levels and can indicate wealthiness [11] and so-
cioeconomic dynamics [12]. The tropospheric nitrogen dioxide
concentration, primarily affected by fossil fuel consumption,
directly correlates with economic activity variations [13]. The
food supply chain is evaluable through land use classification
of agricultural sites [14], [15] or transportation infrastructure
monitoring [16], [17]. Along this line, aircraft are of particular
interest to unveil human and economic activities (e.g., travel,
tourism, freight) and track disease spread due to in-flight trans-
mission [18]–[20].

For those reasons, aircraft detection is present in the most
advanced aerial scene recognition benchmarks [21], [22], and
there is extensive literature addressing airport operation, the
great majority devoted to stationary aircraft [23]–[26]. However,
the number of parked airplanes is not directly correlatable with
airport traffic. For instance, Paris’ Charles de Gaule Airport and
Rome’s Leonardo da Vinci–Fiumicino Airport have, on average,
approximately the same number of airplanes on the ground
every day [27], even though the former has about 50% more
flights in the same period [28]. Although flight traffic is available
from sources other than satellite imagery, such as the OpenSky
Network (OpenSky) [29] and Flightradar245, Liu et al. [30] point
out that no individual technology can reach global coverage or
support all aircraft types. For instance, OpenSky tracks flight
data through automatic dependent surveillance-broadcast (ADS-
B) communications. For this reason, it cannot detect airplanes
without an ADS-B transmitter or too far away from its ADS-B
receivers (e.g., most of the ocean area and a large part of Asia
and the South Hemisphere continents).

Traffic estimation using satellite images requires detecting fly-
ing aircraft, whose literature is not so developed. Zhao et al. [31]
designed ingenious heuristics to perform this task using the
water vapor absorption channel from LandSat-8 thanks to the
observation that reflectance increases for high-altitude surfaces
and generates bright spots on aircraft locations. Despite the high
accuracy in ideal conditions, this method is affected by weather
conditions (e.g., high clouds) and low altitudes (e.g., aircraft
during takeoff and landing). Besides, Landsat-8’s repeat cycle
of 16 days [32] hinders the ability to use temporal data to cope
with these difficulties. Heiselberg [33] and Liu et al. [30] utilized
images captured by the Sentinel-2 satellites for the same job.
These satellites’ multispectral instrument design makes them
observe the earth’s surface at different times in each spectral
band [34]. As the ground serves as a reference to merging bands,
the resulting multispectral images (from MSI sensor on-board
Sentinel-2) present interband measurement displacements due to
parallax for objects at high altitudes and high-speed movement
for objects at any elevation. Fig. 1 illustrates how these displace-
ments create a colored pattern for flying airplanes in the three
MSI bands of visible light. The works of Heiselberg [33] and
Liu et al. [30] also relied on experts to handcraft heuristics for
the airplane detection, which may prevent immediate analyses
in outbreaks that require a fast response.

5[Online]. Available: https://www.flightradar24.com/

Fig. 1. Airplane color patterns in Sentinel-2 images: These satellites observe
the ground surface at different times in each spectral band, creating (a) a parallax
effect for airplanes at high altitudes and (b) a similar color separation effect
for airplanes in high-speed at any elevation; both effects combined produce
the colored patterns shown in figures (c)–(e). This figure contains modified
Sentinel-2 data processed by Euro Data Cube.

In this work, we take advantage of the advances driven by
deep learning algorithms [35]—bioinspired neural networks that
learn representations with multiple abstraction levels and dis-
cover intricate patterns in massive data—to devise a dependable
and adaptable detector. Our approach goes beyond the detection
of flying airplanes as we use our airplane detector to build a
time series of the number of landing or takeoff airplanes in
airports. We then process those time series to estimate structural
breaks (caused by lockdown restriction at the beginning of the
pandemic) and to compute the recovery rate for the monitored
airports. The presented framework supports decision-making
during the COVID-19 pandemic by measuring how fast the
airports are recovering toward getting into their normal operation
and if such recovery is in accordance with opening and lockdown
policies, which should be defined considering the number of
cases and deaths of COVID-19 pandemic. Furthermore, our
approach was designed to require a small amount of labeled
data for training the proposed flying airplane detector, without
loss of generality. We validate our approach by monitoring
the 30 busiest airports in countries with some integration to
the European Union. The results show the effectiveness of our
solution to measure such activities and the recovery rate of
such airports. Finally, we can adapt our approach to different
global-scale applications, like tracking container ships in ports
and cargo trucks on highways, which do not have other data
sources not as readily available as air traffic data. One of the
reasons for us to focus on airport traffic in this work is to have a
ground truth data source to verify the accuracy of the proposed
framework.

In summary, this study presents several contributions to the
remote sensing research field and to aid society in facing the

https://www.flightradar24.com/
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Fig. 2. Main steps of the proposed approach for detecting flying airplanes and to measure breakouts and recovery rates of airports activities. This figure contains
modified Sentinel-2 data processed by Euro Data Cube. a) AOI selection. b) Image acquisition. c) Flying airplane detection. f) Activity indicator. e) Recovery.
estimation. d) Time series analysis.

negative aspects of the COVID-19 pandemic. First, this method
is currently fully integrated into the rapid action coronavirus
earth (RACE) observation dashboard [36], which is an open
platform of the European Space Agency (ESA) that uses earth
observation satellite data and artificial intelligence to measure
the impact of the COVID-19 lockdown and to monitor postlock-
down recovery. This study also shows how to design and train a
shallow neural network to detect flying airplanes using remote
sensing imagery and with a minimum amount of annotated im-
ages. The flying airplane detection task is still an open problem in
the current literature, and this study contributes with the proposal
of a new technique for this task that has been successfully used
in a challenging and practical scenario related to combating the
COVID-19 pandemic. The third contribution of this study relies
on the construction of a new dataset, along with the ground-truth
annotations of flying airplanes, to support future researches
involving flying airplane detection through satellite images. The
fourth contribution refers to the analysis of time series built
with our flying airplanes detector to estimate breakouts and
recovery rate, automatically, and to support decision-making
to opening and closing airports taking into account the official
numbers of COVID-19 cases and deaths. Finally, the source
code of our solution, the trained models, and the annotated data
are freely available to the scientific community, encouraging
reproducibility of our results and the use of our solution in
similar situations in the future.

II. PROPOSED APPROACH

This study introduces a new approach for measuring airport
activities using satellite to support decision-making during the

COVID-19 outbreak, as illustrated in Fig. 2. More precisely,
we proposed a new method for detecting flying airplanes on
Sentinel-2 satellite that enables the monitoring of airport activity
in wide areas [Fig. 2(a) and (b)]. To do so, we use a fully convolu-
tional network (FCN) [37], which relies solely on convolutional
filters and has many successful applications in the literature,
including semantic segmentation [37], object detection [38],
and human pose estimation [39]. We devised a lightweight FCN
architecture [Fig. 2(c)] containing few trainable parameters, and
thus, requiring lower amounts of training data than other deep
learning architectures available in the literature addressing the
object detection problem [40]. We summarized the detected
flying airplanes in a time series representation associated with
the number of airplanes around each monitored airport over
time (in days). Next, we performed a time series analysis to
estimate breaking points associated with the first lockdown
restriction related to the COVID-19 pandemic [Fig. 2(d)]. Then,
we fitted a log-linear regression model to estimate the recovery
rates for the airports considered in this study, which allowed
us to correlate the estimated recovery rates with the cases and
deaths of coronavirus disease in those locations [Fig. 2(e)].
Finally, we compiled this knowledge into an activity indicator
[Fig. 2(f)] to support the conception, planning, implementation,
and evaluation of disease-containment actions. These stages are
detailed in the following sections.

A. Data Collection

The first stage of this study consisted of creating a dataset
to analyze human travel behavior in the European Union. Our
analysis relies on detecting flying airplanes from satellite images
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Fig. 3. Data collection statistics. (a) Total number of images and viable cells
per airport. (b) Number of images and viable cells per month for all airports.

Fig. 4. Sampling strategy for training: for each annotation (point shown in
blue), we extract positive image patches centered on blue and green points.
Green points are dp pixels away from the blue one in one or both axes (dp = 3).
Negative image patches are centered on red points, which are dn pixels away
from the blue one in one or both axes (dn = 25). This figure contains modified
Sentinel-2 data processed by Euro Data Cube.

and measuring the volume of flights over time. To capture traffic
dynamics through remote sensing, the satellite must have a high
revisit rate, it must perceive high-speed objects, and imaging
resolution must be sufficiently high so that airplanes are visible.
The Copernicus Sentinel-2 constellation meets all of these re-
quirements [34]. The Sentinel-2 mission includes two identical
satellites in the same sun-synchronous polar orbit, 180◦ apart
from each other, that revisit any earth location every 2 to 5 days
(higher frequency for areas close to the poles). They capture the
visible bands of their multispectral images [red, green, and blue
(RGB)] with a ground sampling distance (GSD) of 10 m and
a time-lapse of approximately 0.5 s between consecutive bands
(red–green and green–blue).

The proposed method operates on sequences of satellite im-
ages from areas of interest (AOI), which are rectangles with
1.05 longitude degrees in width and 0.7 latitude degrees in
height, centered at the geographical coordinates of the 30 busiest
airports (i.e., airports that had the highest number of passengers
in 2019) in countries with some integration to the European

Union. Thus, the AOIs have an area of 6000 km2, on average,
and the selected airports cover 26 different cities and 18 different
countries. Fig. 2(a) highlights their location, and the complete
list of International Air Transport Association (IATA) airport
codes is shown in Fig. 3(a). The specified AOI provides an
observation window of approximately 20 min around each air-
port. More specifically, a satellite image captured at timestamp t
shows flight arrivals in the range [t, t+ 20min] and departures
in the range [t− 20min, t] for the depicted airport.

We downloaded Sentinel-2 RGB images using the Sentinel-
Hub engine [41]. We divided each AOI into a 7× 7 grid and
evaluated each grid cell’s viability considering the following
criteria: 1) Cells cannot have more than 30% of cloud coverage;
and 2) cells cannot have more than 10% of missing data. The
average number of viable cells per image is 15. Fig. 3(a) shows
the number of images and viable cells per airport, while Fig. 3(b)
shows the total number of images and viable cells over time.
These images were captured by Sentinel-2 satellites between
June 26th, 2015 and July 30th, 2020.

B. Shallow FCN for Detecting Flying Airplanes

Current state-of-the-art detectors either use region proposal
or feature pyramid networks to estimate both bounding box
coordinates and classes of objects in a scene [40], [42]. Such
detectors take advantage of deep architectures [43] that contain
hundreds of millions of trainable parameters, and thus, require
large training data. With this in mind, we hypothesize that the
use of shallow architectures is more adequate for modeling
our problem due to the absence of a large training data with
annotated ground truth. Shallow architectures have fewer train-
able parameters, in comparison to deep architectures, and thus,
require a reduced amount of labeled data during the training
stage. It is important to notice that labeling data is a costly
and a time-consuming process, which may become prohibitive
when a rapid response is necessary. Furthermore, as we are
only interested in counting airplanes, information like bounding
boxes and airplane size, in terms of pixels, is not relevant to
us. With this in mind, we can reduce the complexity of our
architecture by modeling the problem of counting airplanes as
a classification problem devised to classify each pixel of the
image as being or not the center of a flying airplane [green dot
in Fig. 1(c)–(f)].

To validate our hypothesis, we designed a shallow FCN [37]
to produce a probability value for each pixel of an input image,
as illustrated in Fig. 2(c). More precisely, the receptive field
around each pixel was set to a region of 51× 51 pixels, which
perceives airplanes traveling up to 1800 km/h, twice as much
as the typical commercial cruise speed. This surplus handles
the variability introduced by parallax and altitude changes. The
proposed shallow FCN architecture consists of five consecutive
5× 5 convolutional layers, each followed by a rectified linear
unit activation [44], batch normalization [45], and a 5× 5 max
pooling. Then, we added an 11× 11 convolutional layer with
sigmoid activation to output values between 0 and 1. All layers
use unit strides so that the output resolution is the same as the
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Algorithm 1: Pseudoalgorithm for Training Our FCN Model.

input. This architecture has a total of 277 745 learnable parame-
ters, which correspond to a model size of only∼1.1 MB. Finally,
nonmaximum suppression [46] returns unique detections, and a
threshold of 0.5 selects the ones that most likely represent an
airplane.

Due to the global nature of the COVID-19 pandemic, the
generalization is an important aspect to consider. More precisely,
it is essential to detect flying airplanes in unknown areas without
the need for retraining our model. To evaluate this competence,
we used the airports with the first 15 IATA codes in alphabetical
order for training [see Fig. 3(a)], and remaining 15 airports
were used for testing only. With this split we can measure our
detector’s performance in airports that were not seen during
training to validate its generalization capability. Besides, we
only used images from January 1, 2020 to June 30, 2020 for
training. Thus, we can also use images outside this time period
to evaluate our detector’s behavior in unseen images from known
areas (training airports).

We adopted a semiautomatic strategy to obtain enough an-
notations even when a rapid response is required. First, we
manually annotate as many instances of the target object as
possible in a small number of images (in this work, we annotated
190 flying airplanes in 18 images from the Charles de Gaulle
Airport). Then, we gradually expand this set of annotations by
alternating between training a model with the existing annota-
tions and manually inspecting the detection results to update the
annotation set. In our case, we trained an initial model using our
18 annotated images and used it to detect airplanes in all training
images. We removed all false alarms from the set of detected
airplanes through a visual inspection, and used the coordinates
of the remaining detections as the new set of annotations. We
repeated this process once more, but this time we also adjusted
the detected coordinates to overlay the green dot of the flying

airplane pattern [see Fig. 1(c)–(f)]. We ended up with 1782 flying
airplanes in our final annotation set, which was used to train our
final detection model. Every training repetition was carried out
by Algorithm 1, with N = 1 and M = ∞ for temporary models
and N = 10 and M = 50 for the final detector. N is a patience
parameter used to stop the training early if the model does not
improve for N consecutive epochs, and M is the maximum
number of epochs.

C. Time Series Generation

As shown in Fig. 7, satellite images do not always cover
the entire AOI due to cloud occlusions or to a misalignment
between the satellite visible area and the AOI. Thus, estimating
the airplane count within a day is not accurate enough for further
calculations. We alleviate this problem by using a temporal
window w. The set of satellite images Iw within this window
are used to produce an average airplane count Cw, as

Cw =

7∑

i=1

7∑

j=1

∑
k∈Iw ckij

max{1,∑k∈Iw vkij}
(1)

where ckij is the airplane count for the cell in the ith row and
jth column of the kth image, and vkij is 1 if this cell is viable
and 0 otherwise. As can be seen, we compute averages at cell
level for our 7× 7 AOI grids and then sum all cell averages to
obtain a count estimate at image level. We use a window size of
30 days with a step size of one day to create our time series [see
examples in Fig. 9(c).

In some cases, satellite images may present some artifacts
caused by the misalignment between color bands or sun-glint
[see Fig. (5)]. Although their occurrence is rare, these artifacts
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Fig. 5. RGB noise patterns in satellite images caused by (a) misalignment
between color bands or by (b) sun-glint. This figure contains modified Sentinel-2
data processed by Euro Data Cube.

tend to produce several false positives close to each other. If ig-
nored, this problem considerably affects individual cell averages
and the final airplane count. To cope with these noisy regions,
given that no grid cell in the training set has more than four
annotated airplanes (considering the final annotation set used
for training), we ignore cells that have more than five detected
airplanes (set ckij = 0 and vkij = 0 if ckij > 5).

D. Time Series Analysis

To estimate the airports’ activity in normal and exceptional
periods, including the COVID-19 outbreak, we proposed a tem-
poral analysis of time series built from the number of airplanes
flying around airports considered in this work. We adopted the
use of the concept of the structural breaks, which has been
applied in other remote sensing-related problems [47]–[49].
Thus, we characterize the breaks as a position in the time series
in which an abrupt shift (or decrease) is observed [47].

To detect a breaking point in the time series, we adopted two
approaches: The simple moving-average (SMA) crossover [50]
and Twitter’s breakout detection [51]. The simple SMA
crossover comprises two simple moving average to follow
short-term and long-term tendencies. While the short-term
moving average is more reactive to variations, the long-term
moving average aggregate changes over a long time, and thus,
produced a smoothed curve. When the curve resultant of these
two moving average crosses, then we might have a change of ten-
dency. In turn, the Twitter algorithm employs the E-divisive with
medians (EDM) method [52] to automatically detect breakouts
in time series. The authors employed the E-statistics to locate
changes in mean without any assumption regarding the data
distribution. According to authors, this approach was designed
to work in presence of anomalies. A more in-depth discussion
regarding the mathematics and statistical theories regarding this
method can be found in the literature [51], [52]. We evaluate
these two algorithms to detect a breaking point in our time series
to find the instant t (in days) in which the airport starts recovering
from a very low activity state.

After finding the breaking point in time series for each airport,
the next stage of our analysis consists of computing the recovery
rate of airports’ activity [53]. First, we computed a baseline YB ,

which is the average of the short-term moving average. Then,
we define the recovery rate using the following exponential
model [54], as follows:

dy

dt
= −λ(YB − Yt) (2)

where Yt is the observed trend in the instant t and λ is the recov-
ery rate computed by fitting a linear regression of−ln(YB − Yt)
against time. Fig. 2(d) and (e) illustrates the methodology used
to compute the recovery rate. In Fig. 2(d), for a given time series,
the baseline YB is shown as a green line and the breaking point
as a red line. Then, we compute the differences between the
baseline and all Y values after the breaking point. These values
are transformed into a logarithm scale and used to fit a linear
regression [Fig. 2(e)]. Finally, the slope coefficient of the fitted
line represents the recovery rate for that time series.

III. RESULTS

We trained our neural network models on a single node of
a GPU cluster, with four NVIDIA GTX 1080 Ti GPUs and
128 GB RAM. We ran our inference experiments in a single
machine with an Intel Core i7-6800 K CPU, an NVIDIA Titan
Xp GPU, and 128 GB RAM. We can process a month of data for
the 30 AOIs considered in this work in less than 12 h with this
configuration. This amount of time includes: 1) Downloading
cloud masks, data masks, and RGB images; 2) running our
detector on the RGB images; and 3) generating and analyzing
time series.

A. FCN-Based Detection Results

To assess the effectiveness of our approach to detect flying
airplanes, we designed two experiments in order to measure
detection errors in practical scenarios: 1) Visual inspections
around each detection to determine the proportion of false alarms
and 2) comparison to existing publicly available flight records to
quantify the occurrence of false negatives. In the context of this
work, false alarms occur when our method classifies background
patches as a flying airplane, while false negatives occur when
the method classifies flying airplane patches as background.

1) Visual Inspection to Quantify False Alarms: We con-
ducted an error analysis to determine the number of false alarms
of our method in detecting flying airplanes by visually inspecting
the detection results in images that were not seen during training.
To this end, we first extracted patches around each detection in
images captured between June 2015 and December 2019 from
the 15 training AOIs. After manually classifying each patch
as a true positive (TP ) or a false alarm (FA), we compute
the false discovery rate (FDR = FA

TP+FA ) for unseen data from
AOIs seen during training. We adopted this strategy because
it allows accurately estimating FDR in the absence of ground
truth annotations. From the total number of 25 747 detections,
410 were false alarms, which corresponds to a 1.59% FDR.
This results in 7.6 false alarms per month, i.e., less than one
false alarm per airport each month. Knowing that each AOI has
an average of 10 images per month and each image has up to
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20 million airplane candidates, the incidence of false alarms in
areas observed during training is minimal.

To evaluate the generalization capability of our detector oper-
ating in unknown areas, we repeated the previous analysis using
the images captured between June 2015 and June 2020 from the
AOIs not seen during training. There were 616 false alarms in the
midst of 30 958 detections, a 1.99% FDR. The average number
of false alarms per month was 10.1, which again resulted in less
than one false alarm per airport each month. These values are
similar to the ones reported for training AOIs and show that our
detector is equally applicable to AOIs that were not seen during
training but have a similar setup.

We show several examples of regions depicting correct de-
tections and false alarms in Fig. 6. These examples show the
robustness of our detector to a wide range of variations and
illustrate the most common causes of misdetection.

2) Analysis of Publicly Available of Flight Records to
Quantify False Negatives: Given the vast amount of data col-
lected in this work, a comprehensive annotation of flying air-
planes that allows a precise estimation of the number of false
negatives is unfeasible. Thus, to quantitatively measure the de-
tection accuracy, we used publicly available flight track records
from the OpenSky [29] as a reference, as it provides extensive
coverage of the European continent. To illustrate one advantage
of this study, the steps to adapt our framework to the African
continent are 1) listing new AOIs and 2) downloading satellite
images for them. Meanwhile, OpenSky currently lacks coverage
in this area and could not be used in such rearrangement.

In our experiments, we retrieved all OpenSky records whose
portrayed airplanes are inside one AOI at the same moment that
the area is imaged by a Sentinel-2 satellite from January 2020
to June 2020. As shown in Fig. 7, these records not necessarily
include all airplanes that appear in one image, either due to
the absence of tracks for some flights or to the registering
of incomplete tracks. Also, not all airplanes whose tracks are
available within a certain AOI can be detected by our approach.
In most cases, this occurs because these airplanes appear over
nonviable cells. In other cases, small airplanes are not visible in
the satellite image.

For this analysis, we created two time series with monthly
estimates of the number of flights for each AOI, one using
our detection results and the other using the OpenSky records.
The time series for training and testing AOIs are presented in
Fig. 8(a) and (b), respectively. When comparing the two series of
the same AOI, we obtained a root mean squared error (RMSE) of
2.9 and a mean signed deviation (MSD) of −0.8 on average for
training AOIs, and a 2.7 RMSE and a −1.4 MSD on average for
testing AOIs. Once again, the results for known and unknown
AOIs are close and reinforce our detector’s generalization power.
The RMSE values show that, when looking into individual
AOIs, our results are comparable to OpenSky records, exhibiting
similar volume of flights and trends in airport activity. The MSD
values reveal that our estimates are consistently lower than their
respective OpenSky values. This negative bias approximates
the average number of false negatives per image. These false
negatives, however, can either be caused by detection failure
[Fig. 7(a)] or data absence [Fig. 7(b)].

Fig. 6. Examples of satellite image patches surrounding automatic detections.
Samples classified as true positives. (a), (b) Large airplanes, whose shape
contours are visible, some of them with contrails. (c) Medium airplanes, which
are still highly visible but have no shape cues. (d) Airplanes at low-speed
(captured during landing or take off). (e) Incomplete airplanes due to missing
data. (f) Moderate cloud occlusions. (g) Small airplanes, which are barely visible
even after further magnification. (h) Severe cloud occlusions. Samples classified
as false alarms caused by. (i) Image stitching in cloud areas. (j) Parallax in cloud
edges. (k) Sun-glint over water surface. (l) Colored buildings. (m) Ground lights.
(n) Movement patterns from vehicles in roadways. This figure contains modified
Sentinel-2 data processed by Euro Data Cube.

If we consider the average time series from several AOIs
[thick black lines in Fig. 8(a) and (b), the RMSE is reduced by
two thirds for known airports (from 2.9 to 1.0) and by half for
unknown airports (from 2.7 to 1.4). By averaging multiple AOIs
from different countries, we not only obtain stabler series but
also integrate airport activity at continental level. To illustrate
how accurate those measurements can be, we recreate the real
number of flights per month from 42 European countries (data
from March to September of 2019 and 2020 made available by
Eurocontrol [28]) using the monthly average of the 30 AOIs
considered in this work (data from August to September of
2020 generated by the live version of our approach at the
RACE dashboard [36]). As both series are in different scales,



7220 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 7. Visual comparison between our detection results (filled yellow circles)
and the OpenSky Network flight records (unfilled pink circles). The green
lines represent the OpenSky tracks, from which we trace the location of the
airplanes at the image acquisition timestamp. Many airplanes are depicted in
both circle styles, and the displacement between yellow and pink circles is
caused by different factors (e.g., airplane altitude and speed, satellite viewpoint).
Sometimes detected airplanes do not have a corresponding OpenSky location
due to incomplete tracks during take-off and landing [blue rectangle in (a)] or to
missing track records [cyan rectangle in (a)]. In turn, some OpenSky locations
were not detected by our method because airplanes were too small [red rectangle
in (a)] or because they were located over nonviable cells [red rectangle in (b)].
This figure contains modified Sentinel-2 data processed by Euro Data Cube.

we normalized them by their maximum values in the considered
period, and the outcome is presented in Fig. 8(c). This result
shows that our monthly estimates are directly proportional to
the real number of flights. Thus, despite noisy, our time series
for individual AOIs fluctuate around their expected values and
allow us to conduct AOI-specific analyses.

B. Time Series Analysis Results

This section presents the time series analysis applied in this
study to discover outbreaks in airports’ activities caused by the
COVID-19 pandemic and to estimate their recovery rate. In
both analyses, we use the proposed flying airplane detection
algorithm to build a time series associated with the number of
flying airplanes in each AOI considered in this study.

1) Structural Break Detection: We assess the effectiveness of
both SMA crossover [50] and Twitter’s breakout detection [51]
by analyzing their parameter space and then selected the best
technique for our problem considering their best configuration.
To measure the effectiveness of such methods to detect structural
breaks, we considered the date May 1st as being the observed
breaking point, which reflects the period in which the airports
presented a significantly reduction in their operations. We mea-
sure the ability of both techniques in detecting these breaking
points by computing the mean absolute error (MAE) and the
RMSE between the observed and predicted breaking points.

For the SMA crossover method, we analyzed the short-term
parameters considering values ranging from 7 to 49 days and the
long-term parameters taking values ranging from 14 to 98 days.
From these experiments, we could observe that SMA crossover
method presented a better performance using a 14-day window
size for the short-term parameter and a 49-day window size for
the long-term. For the Twitter algorithm, we analyzed its two
main parameters, msize and beta parameters. For the msize, we

Fig. 8. Average number of flights per month computed using our detector
(dashed lines) and OpenSky records (solid lines) for (a) known and (b) unknown
airports; thick black lines show the average of all airports in the same chart. (c)
Relative number of flights from March to September of 2019 and 2020 computed
using Eurocontrol’s data for 41 EU countries (solid lines) and our framework
for 30 airports (dashed lines).

consider eight values ranging from 64 to 128 days, and for the
beta parameter (penalization parameter), we consider ten values
ranging from 0.1 to 1.0. Before applying the Twitter algorithm
for detecting breaking points, we first use a smoothing technique
to remove random variations, and thus, reveals underlying trends
clearly. From these experiments, we could observe a better
performance considering a msize and beta parameter values
of 64 and 0.2, respectively. As a result, we observed a 19.7
MAE and a 23.4 RMSE for the SMA crossover method, and a
19.9 MAE and a 26.5 RMSE for the Twitter algorithm. Both
metrics indicate the prediction quality, with errors ranging from
0 to infinity and lower values being better.

Once the algorithms returned quantitative values, we adopted
the use of the Wilcoxon signed-rank (WSR) test statistic to verify
if both algorithms are statistically different. The WSR test is a
nonparametric test used to assess the null hypothesis that two
related paired samples come from the same distribution [55].
More precisely, we computed the breaking points using both
algorithms for the 30 airports considered in this study. Then,
we converted the detected breaking point dates into the Julian
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Fig. 9. Top figure shows (a) the performance results (in terms of R-squared) obtained after fitting a log-linear model to each airport data. The second row (b)
shows examples in which we could fit a perfect log-linear regression model and thus compute the recovery rate (LGW and CDG), and an example in which we
could not fit a log-linear regression model (WAW), which suggests that this airport does not present a clear recovery pattern. Finally, the third row (c) shows the
time series for these three examples as well as the baseline and detected breaking point.

format, and then we applied the WSR test to check if both algo-
rithms are statistically different. The obtained p-value confirmed
that the differences between the two algorithms’ results are
statistically significant, considering a confidence level of 95%.
Thus, from hereon we use the best configuration of the SMA
crossover since this method presented a better performance.

2) Recovery Rate and COVID-19 Analysis: To compute the
recovery rate, we fitted a log-linear regression model considering
a linear regression algorithm with a mean squared error (mse)
as a cost function. In short, we estimated the structural break for
each time series and their respective baseline, which corresponds
to the average number of flying airplanes. Then, we computed the
log of the difference between the daily estimations of counted
airplanes and the baseline value. The estimation of log-linear
regression models considers such differences (in log scale) as
a dependent variable and the data timestamp as an independent
variable.

To measure the goodness of fit of regression models to esti-
mate the recovery rate for the airports, we adopted the R-squared
metric, also known as coefficient of determination, which ranges
from 0.0 to 1.0 and measures the proportion of variance in the
independent variable explained by dependent variables

R − squared = 1−
∑n

t=1(yt − ŷt)
2

∑n
t=1(yt − ȳ)2

, ȳ =
1

n

n∑

t=1

yt (3)

where yt and ŷt are the observed and predicted values for the
time t. In this context, an R-squared of 0.0 means that the fitted
model does not explain any variation in the independent variable
around its mean, while an R-squared of 1.0 means that the
fitted model explains all variations in the independent variable
around its mean, i.e., the obtained regression model fitted all
data points [55].

Fig. 9(a) shows the performance of the fitted models in terms
of R-squared, from which we could observe values higher than
0.8 for several airports. Also, Fig. 9(b) and (c) illustrate airports
with positive (first two columns) and negative recovery rate (last
column) and their respective time series from January 1st, 2020
to July 30th, 2020. Only two airports presented a negative re-
covery rate in the considered period (MAN and WAW), meaning
that their activities was still decreasing after the breaking point.

Finally, we present an analysis of the COVID-19 situation
and the necessary strictness for border control policies by cor-
relating the recovery rates and the 14-day moving average of
the daily number of new cases and deaths, as illustrated in
Fig. 10. This study considered the official number of cases
and deaths reported until July 30th, 2020 [56], [57]. When we
correlated the recovery rate and the daily number of new cases of
COVID-19, we observed a strong positive correlation between
both variables for VIE, PMI, and ZRH. This suggests that these
airports restarted their activities while the number of new cases
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Fig. 10. Correlation analysis between the recovery rates and the total number of cases and deaths caused by the COVID-19 disease.

Fig. 11. RACE observation dashboard. The map shows the location of the 30 airports being monitored. Red and blue circles in the map indicate low and normal
traffic levels, respectively, and dark blue circles show the numbers of airports in that region. The bar chart in the right shows the results of our method for a specific
airport, which comprises the time series of the number of flying airplanes. Finally, the three maps in the bottom shows the traffic levels for three time periods:
before the COVID-19 pandemic (Dec. 2019); early period after the pandemic, with mobility restrictions (Apr. 2020); and after a gradual reopening (Sep. 2020).

was still increasing. Conversely, we observed a strong negative
correlation between the recovery rate and the daily new cases of
COVID-19 for several airports such as MUC and DUS airports
from German, and the SNT, LGW, LHR, and LTN airports from
Great Britain.

Of course, the positive correlations found in our analysis do
not imply the causation of the rise in the total number of cases
and deaths. However, airports expanding their activities while
the total number of cases and deaths caused by COVID-19

is increasing can negatively impact the pandemic’s trajectory.
Therefore, we can surely state that the indicator of activity
presented in this work can reveal which airports and countries
demand more attention from the authorities.

IV. CONCLUSION

The measurements of human activity are nowadays an essen-
tial task for planning actions to fight against huge outbreaks that
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impact human daily activities as the COVID-19 pandemic. In
this context, the proposed approach for measuring airport activ-
ities can serve society as a valuable and independent indicator
of human activity without any political biases. Our solution now
integrates the RACE observation dashboard [36], a platform
from the ESA that uses Earth observation satellite data and
artificial intelligence to measure the impact of the coronavirus
lockdown and to monitor postlockdown recovery, as illustrated
in Fig. 11.

Our detector was able to locate most airplanes appearing on
satellite images with minimal false detections. On average, we
get less than one false detection per month in each airport.
Furthermore, our time series analysis can be used to identify
abnormal behaviors in air traffic and correlate changes in the
number of airplanes with COVID-19 statistics. Decision-makers
can use this information to substantiate border control and
lockdown measures.

Thanks to our semiautomatic annotation strategy, this ap-
proach can be straightforwardly adapted to detect other objects,
such as ships [33] and transportation trucks [58], and use this
outcome to devise other informative indicators.
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